Welcome to the Lux AI Challenge Season 2! (Now at NeurIPS 2023)
The Lux AI Challenge is a competition where competitors design agents to tackle a multi-variable optimization, resource gathering, and allocation problem in a 1v1 scenario against other competitors. In addition to optimization, successful agents must be capable of analyzing their opponents and developing appropriate policies to get the upper hand. The goal of the NeurIPS 2023 edition of the competition is to focus on scaling up solutions to maps and game settings larger than the previous competition.
Key features this season!
Go to our Getting Started section to get started programming a bot. The official NeurIPS 2023 competition runs until November 17th and submissions are due at 11:59PM UTC on the competition page: https://www.kaggle.com/competitions/lux-ai-season-2-neurips-stage-2.
Make sure to join our community discord at https://discord.gg/aWJt3UAcgn to chat, strategize, and learn with other competitors! We will be posting announcements on the Kaggle Forums and on the discord.
Environment specifications can be found here: https://lux-ai.org/specs-s2. These detail how the game works and what rules your agent must abide by.
Interested in Season 1? Check out last year's repository where we received 22,000+ submissions from 1,100+ teams around the world ranging from scripted agents to Deep Reinforcement Learning.
If you use the Lux AI Season 2 competition/environment in your work, please cite as so
@inproceedings{luxais2_neurips_23,
title = {Lux AI Challenge Season 2, NeurIPS Edition},
author = {Stone Tao and Qimai Li and Yuhao Jiang and Jiaxin Chen and Xiaolong Zhu and Bovard Doerschuk-Tiberi and Isabelle Pan and Addison Howard},
booktitle = {Thirty-seventh Conference on Neural Information Processing Systems: Competition Track},
url = {https://github.com/Lux-AI-Challenge/Lux-Design-S2},
year = {2023}
}
You will need Python >=3.8, <3.11 installed on your system. Once installed, you can install the Lux AI season 2 environment and optionally the GPU version with
pip install --upgrade luxai_s2
pip install juxai-s2 # installs the GPU version, requires a compatible GPU
If you don't know how conda works, I highly recommend setting it up, see the install instructions. You can then setup the environment as follows
conda create -n "luxai_s2" "python==3.9"
conda activate luxai_s2
pip install --upgrade luxai-s2
This will install the latest version of the Lux AI Season 2 environment. In particular, the latest versions default game configurations are for the NeurIPS 2023 competition. For those looking for the competition prior to NeurIPS 2023 (smaller mapsizes and scale), see this commit for code or do pip install luxai_s2==2.2.0
.
To verify your installation, you can run the CLI tool by replacing path/to/bot/main.py
with a path to a bot (e.g. the starter kit in kits/python/main.py
) and run
luxai-s2 path/to/bot/main.py path/to/bot/main.py -v 2 -o replay.json
This will turn on logging to level 2, and store the replay file at replay.json
. For documentation on the luxai-s2 tool, see the tool's README, which also includes details on how to run a local tournament to mass evaluate your agents. To watch the replay, upload replay.json
to https://s2vis.lux-ai.org/ (or change -o replay.json
to -o replay.html
)
Each supported programming language/solution type has its own starter kit, you can find general API documentation here.
The kits folder in this repository holds all of the available starter kits you can use to start competing and building an AI agent. The readme shows you how to get started with your language of choice and run a match. We strongly recommend reading through the documentation for your language of choice in the links below
Want to use another language but it's not supported? Feel free to suggest that language to our issues or even better, create a starter kit for the community to use and make a PR to this repository. See our CONTRIBUTING.md document for more information on this.
If you want to learn how to use the GPU optimized environment see https://github.com/Lux-AI-Challenge/Lux-Design-S2/tree/main/examples/jax_env_tutorial.ipynb
<!-- For the RL starter kit that trains using the jax env, see https://github.com/Lux-AI-Challenge/Lux-Design-S2/tree/main/kits/rl-sb3-jax-env/ -->See https://github.com/RoboEden/Luxai-s2-Baseline for a simple script to download desired episode data from Kaggle. This repository also provides a strong reinforcement learning baseline solution that is easy to iterate and perform research with.
Finally, to stay up to date on changes and updates to the competition and the engine, watch for announcements on the forums or the Discord. See ChangeLog.md for a full change log.
As the community builds tools for the competition, we will post them here!
See the guide on contributing
We are proud to announce our sponsors QuantCo, Regression Games, and TSVC. They help contribute to the prize pool and provide exciting opportunities to our competitors! For more information about them check out https://www.lux-ai.org/sponsors-s2.
We like to extend thanks to some of our early core contributors: @duanwilliam (Frontend), @programjames (Map generation, Engine optimization), and @themmj (C++ kit, Go kit, Engine optimization).
We further like to extend thanks to some of our core contributors during the beta period: @LeFiz (Game Design/Architecture), @jmerle (Visualizer)
We further like to thank the following contributors during the official competition: @aradite(JS Kit), @MountainOrc(Java Kit), @ArturBloch(Java Kit), @rooklift(Go Kit)
Finally, we are grateful for the support provided by Parametrix.ai in the research and development of this challenge.
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信 息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成 模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写 和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演 示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等 材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号