Lux-Design-S2

Lux-Design-S2

AI代理对战,优化资源管理的智能算法挑战

Lux-Design-S2是一项AI算法挑战赛,专注于资源管理优化。本季新增GPU/TPU支持、非对称地图等特性,并提供高质量历史数据。比赛支持多种编程语言,在Kaggle平台进行,截止日期为11月17日。参赛者可通过Discord社区交流学习,共同提升AI算法水平。

Lux AI ChallengeNeurIPS 2023多智能体竞赛资源优化深度强化学习Github开源项目

Lux-Design-S2

PyPI version

Welcome to the Lux AI Challenge Season 2! (Now at NeurIPS 2023)

The Lux AI Challenge is a competition where competitors design agents to tackle a multi-variable optimization, resource gathering, and allocation problem in a 1v1 scenario against other competitors. In addition to optimization, successful agents must be capable of analyzing their opponents and developing appropriate policies to get the upper hand. The goal of the NeurIPS 2023 edition of the competition is to focus on scaling up solutions to maps and game settings larger than the previous competition.

Key features this season!

  • GPU/TPU optimized environment via Jax
  • Asymmetric maps and novel mechanics (action efficiency and planning)
  • High quality dataset of past episodes of game play from hundreds of human-written agents including the strongest humans have been able to come up with thus far.

Go to our Getting Started section to get started programming a bot. The official NeurIPS 2023 competition runs until November 17th and submissions are due at 11:59PM UTC on the competition page: https://www.kaggle.com/competitions/lux-ai-season-2-neurips-stage-2.

Make sure to join our community discord at https://discord.gg/aWJt3UAcgn to chat, strategize, and learn with other competitors! We will be posting announcements on the Kaggle Forums and on the discord.

Environment specifications can be found here: https://lux-ai.org/specs-s2. These detail how the game works and what rules your agent must abide by.

Interested in Season 1? Check out last year's repository where we received 22,000+ submissions from 1,100+ teams around the world ranging from scripted agents to Deep Reinforcement Learning.

If you use the Lux AI Season 2 competition/environment in your work, please cite as so

@inproceedings{luxais2_neurips_23,
  title         =     {Lux AI Challenge Season 2, NeurIPS Edition},
  author        =     {Stone Tao and Qimai Li and Yuhao Jiang and Jiaxin Chen and Xiaolong Zhu and Bovard Doerschuk-Tiberi and Isabelle Pan and Addison Howard},
  booktitle     =     {Thirty-seventh Conference on Neural Information Processing Systems: Competition Track},
  url           =     {https://github.com/Lux-AI-Challenge/Lux-Design-S2},
  year          =     {2023}
}

Getting Started

You will need Python >=3.8, <3.11 installed on your system. Once installed, you can install the Lux AI season 2 environment and optionally the GPU version with

pip install --upgrade luxai_s2
pip install juxai-s2 # installs the GPU version, requires a compatible GPU

If you don't know how conda works, I highly recommend setting it up, see the install instructions. You can then setup the environment as follows

conda create -n "luxai_s2" "python==3.9"
conda activate luxai_s2
pip install --upgrade luxai-s2

This will install the latest version of the Lux AI Season 2 environment. In particular, the latest versions default game configurations are for the NeurIPS 2023 competition. For those looking for the competition prior to NeurIPS 2023 (smaller mapsizes and scale), see this commit for code or do pip install luxai_s2==2.2.0.

To verify your installation, you can run the CLI tool by replacing path/to/bot/main.py with a path to a bot (e.g. the starter kit in kits/python/main.py) and run

luxai-s2 path/to/bot/main.py path/to/bot/main.py -v 2 -o replay.json

This will turn on logging to level 2, and store the replay file at replay.json. For documentation on the luxai-s2 tool, see the tool's README, which also includes details on how to run a local tournament to mass evaluate your agents. To watch the replay, upload replay.json to https://s2vis.lux-ai.org/ (or change -o replay.json to -o replay.html)

Starter Kits

Each supported programming language/solution type has its own starter kit, you can find general API documentation here.

The kits folder in this repository holds all of the available starter kits you can use to start competing and building an AI agent. The readme shows you how to get started with your language of choice and run a match. We strongly recommend reading through the documentation for your language of choice in the links below

Want to use another language but it's not supported? Feel free to suggest that language to our issues or even better, create a starter kit for the community to use and make a PR to this repository. See our CONTRIBUTING.md document for more information on this.

If you want to learn how to use the GPU optimized environment see https://github.com/Lux-AI-Challenge/Lux-Design-S2/tree/main/examples/jax_env_tutorial.ipynb

<!-- For the RL starter kit that trains using the jax env, see https://github.com/Lux-AI-Challenge/Lux-Design-S2/tree/main/kits/rl-sb3-jax-env/ -->

Episodes Dataset

See https://github.com/RoboEden/Luxai-s2-Baseline for a simple script to download desired episode data from Kaggle. This repository also provides a strong reinforcement learning baseline solution that is easy to iterate and perform research with.

Finally, to stay up to date on changes and updates to the competition and the engine, watch for announcements on the forums or the Discord. See ChangeLog.md for a full change log.

Community Tools

As the community builds tools for the competition, we will post them here!

Contributing

See the guide on contributing

Sponsors

We are proud to announce our sponsors QuantCo, Regression Games, and TSVC. They help contribute to the prize pool and provide exciting opportunities to our competitors! For more information about them check out https://www.lux-ai.org/sponsors-s2.

Core Contributors

We like to extend thanks to some of our early core contributors: @duanwilliam (Frontend), @programjames (Map generation, Engine optimization), and @themmj (C++ kit, Go kit, Engine optimization).

We further like to extend thanks to some of our core contributors during the beta period: @LeFiz (Game Design/Architecture), @jmerle (Visualizer)

We further like to thank the following contributors during the official competition: @aradite(JS Kit), @MountainOrc(Java Kit), @ArturBloch(Java Kit), @rooklift(Go Kit)

Finally, we are grateful for the support provided by Parametrix.ai in the research and development of this challenge.

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多