sumo-rl

sumo-rl

用于智能交通信号控制的强化学习框架

SUMO-RL是基于SUMO交通模拟器的强化学习框架,专注于智能交通信号控制。该框架提供简洁接口,支持创建单代理和多代理强化学习环境,允许自定义状态和奖励函数,并兼容主流RL库。SUMO-RL简化了交通信号控制的强化学习研究过程,适用于多种交通网络和场景。目前已应用于多项研究,覆盖从单一交叉口到大规模城市网络的各类交通控制问题。

SUMO-RL强化学习交通信号控制多智能体交通仿真Github开源项目
<img src="docs/_static/logo.png" align="right" width="30%"/>

DOI tests PyPI version pre-commit Code style: black License

SUMO-RL

<!-- start intro -->

SUMO-RL provides a simple interface to instantiate Reinforcement Learning (RL) environments with SUMO for Traffic Signal Control.

Goals of this repository:

  • Provide a simple interface to work with Reinforcement Learning for Traffic Signal Control using SUMO
  • Support Multiagent RL
  • Compatibility with gymnasium.Env and popular RL libraries such as stable-baselines3 and RLlib
  • Easy customisation: state and reward definitions are easily modifiable

The main class is SumoEnvironment. If instantiated with parameter 'single-agent=True', it behaves like a regular Gymnasium Env. For multiagent environments, use env or parallel_env to instantiate a PettingZoo environment with AEC or Parallel API, respectively. TrafficSignal is responsible for retrieving information and actuating on traffic lights using TraCI API.

For more details, check the documentation online.

<!-- end intro -->

Install

<!-- start install -->

Install SUMO latest version:

sudo add-apt-repository ppa:sumo/stable sudo apt-get update sudo apt-get install sumo sumo-tools sumo-doc

Don't forget to set SUMO_HOME variable (default sumo installation path is /usr/share/sumo)

echo 'export SUMO_HOME="/usr/share/sumo"' >> ~/.bashrc source ~/.bashrc

Important: for a huge performance boost (~8x) with Libsumo, you can declare the variable:

export LIBSUMO_AS_TRACI=1

Notice that you will not be able to run with sumo-gui or with multiple simulations in parallel if this is active (more details).

Install SUMO-RL

Stable release version is available through pip

pip install sumo-rl

Alternatively, you can install using the latest (unreleased) version

git clone https://github.com/LucasAlegre/sumo-rl cd sumo-rl pip install -e .
<!-- end install -->

MDP - Observations, Actions and Rewards

Observation

<!-- start observation -->

The default observation for each traffic signal agent is a vector:

obs = [phase_one_hot, min_green, lane_1_density,...,lane_n_density, lane_1_queue,...,lane_n_queue]
  • phase_one_hot is a one-hot encoded vector indicating the current active green phase
  • min_green is a binary variable indicating whether min_green seconds have already passed in the current phase
  • lane_i_density is the number of vehicles in incoming lane i dividided by the total capacity of the lane
  • lane_i_queueis the number of queued (speed below 0.1 m/s) vehicles in incoming lane i divided by the total capacity of the lane

You can define your own observation by implementing a class that inherits from ObservationFunction and passing it to the environment constructor.

<!-- end observation -->

Action

<!-- start action -->

The action space is discrete. Every 'delta_time' seconds, each traffic signal agent can choose the next green phase configuration.

E.g.: In the 2-way single intersection there are |A| = 4 discrete actions, corresponding to the following green phase configurations:

<p align="center"> <img src="docs/_static/actions.png" align="center" width="75%"/> </p>

Important: every time a phase change occurs, the next phase is preeceded by a yellow phase lasting yellow_time seconds.

<!-- end action -->

Rewards

<!-- start reward -->

The default reward function is the change in cumulative vehicle delay:

<p align="center"> <img src="docs/_static/reward.png" align="center" width="25%"/> </p>

That is, the reward is how much the total delay (sum of the waiting times of all approaching vehicles) changed in relation to the previous time-step.

You can choose a different reward function (see the ones implemented in TrafficSignal) with the parameter reward_fn in the SumoEnvironment constructor.

It is also possible to implement your own reward function:

def my_reward_fn(traffic_signal): return traffic_signal.get_average_speed() env = SumoEnvironment(..., reward_fn=my_reward_fn)
<!-- end reward -->

API's (Gymnasium and PettingZoo)

Gymnasium Single-Agent API

<!-- start gymnasium -->

If your network only has ONE traffic light, then you can instantiate a standard Gymnasium env (see Gymnasium API):

import gymnasium as gym import sumo_rl env = gym.make('sumo-rl-v0', net_file='path_to_your_network.net.xml', route_file='path_to_your_routefile.rou.xml', out_csv_name='path_to_output.csv', use_gui=True, num_seconds=100000) obs, info = env.reset() done = False while not done: next_obs, reward, terminated, truncated, info = env.step(env.action_space.sample()) done = terminated or truncated
<!-- end gymnasium -->

PettingZoo Multi-Agent API

<!-- start pettingzoo -->

For multi-agent environments, you can use the PettingZoo API (see Petting Zoo API):

import sumo_rl env = sumo_rl.parallel_env(net_file='nets/RESCO/grid4x4/grid4x4.net.xml', route_file='nets/RESCO/grid4x4/grid4x4_1.rou.xml', use_gui=True, num_seconds=3600) observations = env.reset() while env.agents: actions = {agent: env.action_space(agent).sample() for agent in env.agents} # this is where you would insert your policy observations, rewards, terminations, truncations, infos = env.step(actions)
<!-- end pettingzoo -->

RESCO Benchmarks

In the folder nets/RESCO you can find the network and route files from RESCO (Reinforcement Learning Benchmarks for Traffic Signal Control), which was built on top of SUMO-RL. See their paper for results.

<p align="center"> <img src="sumo_rl/nets/RESCO/maps.png" align="center" width="60%"/> </p>

Experiments

Check experiments for examples on how to instantiate an environment and train your RL agent.

Q-learning in a one-way single intersection:

python experiments/ql_single-intersection.py

RLlib PPO multiagent in a 4x4 grid:

python experiments/ppo_4x4grid.py

stable-baselines3 DQN in a 2-way single intersection:

Obs: you need to install stable-baselines3 with pip install "stable_baselines3[extra]>=2.0.0a9" for Gymnasium compatibility.

python experiments/dqn_2way-single-intersection.py

Plotting results:

python outputs/plot.py -f outputs/4x4grid/ppo_conn0_ep2
<p align="center"> <img src="outputs/result.png" align="center" width="50%"/> </p>

Citing

<!-- start citation -->

If you use this repository in your research, please cite:

@misc{sumorl, author = {Lucas N. Alegre}, title = {{SUMO-RL}}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/LucasAlegre/sumo-rl}}, }
<!-- end citation --> <!-- start list of publications -->

List of publications that use SUMO-RL (please open a pull request to add missing entries):

<!-- end list of publications

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多