Transformer_Tracking

Transformer_Tracking

视觉追踪中Transformer应用的全面综述和前沿动态

本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。

Transformer视觉跟踪目标检测计算机视觉深度学习Github开源项目

Transformer Tracking

This repository is a paper digest of Transformer-related approaches in visual tracking tasks. Currently, tasks in this repository include Unified Tracking (UT), Single Object Tracking (SOT) and 3D Single Object Tracking (3DSOT). Note that some trackers involving a Non-Local attention mechanism are also collected. Papers are listed in alphabetical order of the first character.

:link:Jump to:

[!NOTE] I find it hard to trace all tasks that are related to tracking, including Video Object Segmentation (VOS), Multiple Object Tracking (MOT), Video Instance Segmentation (VIS), Video Object Detection (VOD) and Object Re-Identification (ReID). Hence, I discard all other tracking tasks in a previous update. If you are interested, you can find plenty of collections in this archived version. Besides, the most recent trend shows that different tracking tasks are coming to the same avenue.

:star2:Recommendation

It's the End of the Game

State-of-the-Art Transformer Tracker:two_hearts::two_hearts::two_hearts:

  • GRM (Generalized Relation Modeling for Transformer Tracking) [paper] [code] [video]
  • AiATrack (AiATrack: Attention in Attention for Transformer Visual Tracking) [paper] [code] [video]

Up-to-Date Benchmark Results:rocket::rocket::rocket:

Helpful Learning Resource for Tracking:thumbsup::thumbsup::thumbsup:

  • (Survey) Transformers in Single Object Tracking: An Experimental Survey [paper], Visual Object Tracking with Discriminative Filters and Siamese Networks: A Survey and Outlook [paper]
  • (Talk) Discriminative Appearance-Based Tracking and Segmentation [video], Deep Visual Reasoning with Optimization-Based Network Modules [video]
  • (Library) PyTracking: Visual Tracking Library Based on PyTorch [code]
  • (People) Martin Danelljan@ETH [web], Bin Yan@DLUT [web]

Recent Trends:fire::fire::fire:

  • Target Head: Autoregressive Temporal Modeling

    • Representative

  • Feature Backbone: Joint Feature Extraction and Interaction

    • Advantage

      • Benefit from pre-trained vision Transformer models.
      • Free from randomly initialized correlation modules.
      • More discriminative target-specific feature extraction.
      • Much faster inference and training convergence speed.
      • Simple and generic one-branch tracking framework.
    • Roadmap

      • 1st step :feet: feature interaction inside the backbone.
      • 2nd step :feet: concatenation-based feature interaction.
      • 3rd step :feet: joint feature extraction and interaction.
      • 4th step :feet: generalized and robust relation modeling.

:bookmark:Unified Tracking (UT)

CVPR 2024

  • GLEE (General Object Foundation Model for Images and Videos at Scale) [paper] [code]
  • OmniViD (OmniVid: A Generative Framework for Universal Video Understanding) [paper] [code]

CVPR 2023

  • OmniTracker (OmniTracker: Unifying Object Tracking by Tracking-with-Detection) [paper] [code]
  • UNINEXT (Universal Instance Perception as Object Discovery and Retrieval) [paper] [code]

ICCV 2023

  • MITS (Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation) [paper] [code]

Preprint 2023

  • HQTrack (Tracking Anything in High Quality) [paper] [code]
  • SAM-Track (Segment and Track Anything) [paper] [code]
  • TAM (Track Anything: Segment Anything Meets Videos) [paper] [code]

CVPR 2022

  • UTT (Unified Transformer Tracker for Object Tracking) [paper] [code]

ECCV 2022

  • Unicorn (Towards Grand Unification of Object Tracking) [paper] [code]

:bookmark:Single Object Tracking (SOT)

CVPR 2024

  • AQATrack (Autoregressive Queries for Adaptive Tracking with Spatio-Temporal Transformers) [paper] [code]
  • ARTrackV2 (ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe) [paper] [code]
  • DiffusionTrack (DiffusionTrack: Point Set Diffusion Model for Visual Object Tracking) [paper] [code]
  • HDETrack (Event Stream-Based Visual Object Tracking: A High-Resolution Benchmark Dataset and A Novel Baseline) [paper] [code]
  • HIPTrack (HIPTrack: Visual Tracking with Historical Prompts) [paper] [code]
  • OneTracker (OneTracker: Unifying Visual Object Tracking with Foundation Models and Efficient Tuning) [paper] [code]
  • QueryNLT (Context-Aware Integration of Language and Visual References for Natural Language Tracking) [paper] [code]
  • SDSTrack (SDSTrack: Self-Distillation Symmetric Adapter Learning for Multi-Modal Visual Object Tracking) [paper] [code]
  • Un-Track (Single-Model and Any-Modality for Video Object Tracking) [paper] [code]

ECCV 2024

  • Diff-Tracker (Diff-Tracker: Text-to-Image Diffusion Models are Unsupervised Trackers) [paper] [code]
  • LoRAT (Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance) [paper] [code]

AAAI 2024

  • BAT (Bi-Directional Adapter for Multi-Modal Tracking) [paper] [code]
  • EVPTrack (Explicit Visual Prompts for Visual Object Tracking) [paper] [code]
  • ODTrack (ODTrack: Online Dense Temporal Token Learning for Visual Tracking) [paper] [code]
  • STCFormer (Sequential Fusion Based Multi-Granularity Consistency for Space-Time Transformer Tracking) [paper] [code]
  • TATrack (Temporal Adaptive RGBT Tracking with Modality Prompt) [paper] [code]
  • UVLTrack (Unifying Visual and Vision-Language Tracking via Contrastive Learning) [paper] [code]

ICML 2024

  • AVTrack (Learning Adaptive and View-Invariant Vision Transformer for Real-Time UAV Tracking) [paper] [code]

IJCAI 2024

  • USTrack (Unified Single-Stage Transformer Network for Efficient RGB-T Tracking) [paper] [code]

WACV 2024

  • SMAT (Separable Self and Mixed Attention Transformers for Efficient Object Tracking) [paper] [code]
  • TaMOs (Beyond SOT: It's Time to Track Multiple Generic Objects at Once) [paper] [code]

ICRA 2024

  • DCPT (DCPT: Darkness Clue-Prompted Tracking in Nighttime UAVs) [paper] [code]

Preprint 2024

  • ABTrack (Adaptively Bypassing Vision Transformer Blocks for Efficient Visual Tracking) [paper] [code]
  • ACTrack (ACTrack: Adding Spatio-Temporal Condition for Visual Object Tracking) [paper] [code]
  • AFter (AFter: Attention-Based Fusion Router for RGBT Tracking) [paper] [code]
  • AMTTrack (Long-Term Frame-Event Visual Tracking: Benchmark Dataset and Baseline) [paper] [code]
  • BofN (Predicting the Best of N Visual Trackers) [paper] [code]
  • CAFormer (Cross-modulated Attention Transformer for RGBT Tracking) [paper] [code]
  • CRSOT (CRSOT: Cross-Resolution Object Tracking using Unaligned Frame and Event Cameras) [paper] [code]
  • CSTNet (Transformer-Based RGB-T Tracking with Channel and Spatial Feature Fusion) [paper] [code]
  • DyTrack (Exploring Dynamic Transformer for Efficient Object Tracking) [paper] [code]
  • eMoE-Tracker (eMoE-Tracker: Environmental MoE-Based Transformer for Robust Event-Guided Object Tracking) [paper] [code]
  • LoReTrack (LoReTrack: Efficient and Accurate Low-Resolution Transformer Tracking) [paper] [code]
  • MAPNet (Multi-Attention Associate Prediction Network for Visual Tracking) [paper] [code]
  • MDETrack (Enhanced Object Tracking by Self-Supervised Auxiliary Depth Estimation Learning) [paper] [code]
  • MMMP (From Two Stream to One Stream: Efficient RGB-T Tracking via Mutual Prompt Learning and Knowledge Distillation) [paper] [code]
  • M3PT (Middle Fusion and Multi-Stage, Multi-Form Prompts for Robust RGB-T Tracking) [paper] [code]
  • NLMTrack (Enhancing Thermal Infrared Tracking with Natural Language Modeling and Coordinate Sequence Generation) [paper] [code]
  • OIFTrack (Optimized Information Flow for Transformer

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多