百万级上下文多模态AI模型突破性成果
Large World Model (LWM)是一种创新的多模态AI模型,具备百万级上下文处理能力。LWM通过分析大规模视频和文本数据,实现了语言、图像和视频的综合理解与生成。该项目开源了多个模型版本,支持处理超长文本和视频,在复杂检索和长视频理解等任务中表现出色,为AI技术发展提供了新的可能性。
大世界模型 (LWM) 是一个通用的大上下文多模态自回归模型。它通过RingAttention在包含多样化长视频和书籍的大型数据集上进行训练,能够执行语言、图像和视频的理解与生成。
当前的语言模型在理解难以用文字描述的世界方面存在不足,并且在处理复杂的长篇任务时面临困难。视频序列提供了语言和静态图像所缺乏的宝贵时序信息,使其成为与语言进行联合建模的理想选择。这类模型可以同时理解人类文本知识和物理世界,从而为辅助人类提供更广泛的人工智能能力。然而,从数百万个视频和语言序列标记中学习面临着内存限制、计算复杂性和有限数据集等挑战。为了应对这些挑战,我们精心策划了一个包含多样化视频和书籍的大型数据集,利用RingAttention技术在长序列上进行可扩展训练,并逐步将上下文大小从4K增加到1M标记。本文作出以下贡献:(a) 最大上下文神经网络:我们在长视频和语言序列上训练了一个具有最大上下文大小的transformer,在困难的检索任务和长视频理解方面树立了新的基准。(b) 解决视觉-语言训练挑战的方案,包括使用掩码序列打包混合不同长度的序列、利用损失加权平衡语言和视觉,以及为长序列对话生成模型生成的问答数据集。(c) 高度优化的实现,包括RingAttention、掩码序列打包和其他关键特性,用于训练百万长度的多模态序列。(d) 完全开源的7B参数模型系列,能够处理 超过1M标记的长文本文档(LWM-Text, LWM-Text-Chat)和视频(LWM, LWM-Chat)。 这项工作为在大规模长视频和语言数据集上进行训练铺平了道路,以发展对人类知识和多模态世界的理解,并拓展更广泛的能力。
本代码库支持Ubuntu系统,尚未在Windows或macOS上进行测试。我们建议使用TPU进行训练和推理,但也可以使用GPU。在TPU上,代码通过Jax的Pallas高度优化,可以在非常大的上下文大小下使用RingAttention实现高MFU。在GPU上,代码基于XLA,但优化程度不如TPU。
通过以下命令安装依赖:
conda create -n lwm python=3.10
conda activate lwm
pip install -r gpu_requirements.txt
或使用以下命令设置TPU VM:
sh tpu_requirements.sh
有纯语言和视频-语言版本 ,提供从32K到128K、256K和1M标记的上下文大小。视觉-语言模型仅提供Jax版本,而纯语言模型同时提供PyTorch和Jax版本。以下是可用模型的名称及其对应的上下文大小和功能:
模型名称 | 上下文大小 | 语言或视觉-语言 | 对话或基础 | 链接 |
---|---|---|---|---|
LWM-Text-Chat-128K | 128K | 语言 | 对话 | [Pytorch][Jax] |
LWM-Text-Chat-256K | 256K | 语言 | 对话 | [Pytorch][Jax] |
LWM-Text-Chat-512K | 512K | 语言 | 对话 | [Pytorch][Jax] |
LWM-Text-Chat-1M | 1M | 语言 | 对话 | [Pytorch][Jax] |
LWM-Text-128K | 128K | 语言 | 基础 | [Pytorch][Jax] |
LWM-Text-256K | 256K | 语言 | 基础 | [Pytorch][Jax] |
LWM-Text-512K | 512K | 语言 | 基础 | [Pytorch][Jax] |
LWM-Text-1M | 1M | 语言 | 基础 | [Pytorch][Jax] |
LWM-Chat-32K | 32K | 视觉-语言 | 对话 | [Jax] |
LWM-Chat-128K | 128K | 视觉-语言 | 对话 | [Jax] |
LWM-Chat-1M | 1M | 视觉-语言 | 对话 | [Jax] |
使用 scan_query_chunk_size
和 scan_key_chunk_size
控制自注意力中块状计算的块大小。使用 scan_mlp_chunk_size
控制前馈网络中块状计算的块大小。使用 scan_attention=True
和 scan_mlp=True
来启用/禁用自注意力和前馈网络中的块状计算。
您可以使用 mesh_dim=dp, fsdp, tp, sp
来控制并行度和RingAttention。这是一个由4个用逗号分隔的整数组成的字符串,分别表示数据并行、完全分片数据并行、张量并行和序列并行的数量。
例如,mesh_dim='1,64,4,1'
表示1个数据并行、64个完全分片数据并行、4个张量并行和1个序列并行。mesh_dim='1,1,4,64'
表示1个数据并行、1个完全分片数据并行、4个张量并行和64个序列并行,用于RingAttention。
在本节中,我们提供了如何运行每个提供的脚本的说明。对于每个脚本,您可能需要在脚本开头描述的变量中填写自己的路径和值。
要运行以下每个脚本,使用 bash <脚本名称>.sh
:
bash scripts/run_train_text.sh
bash scripts/run_train_vision_text.sh
bash scripts/run_eval_needle.sh
bash scripts/run_eval_needle_multi.sh
bash scripts/run_sample_image.sh
bash scripts/run_sample_video.sh
bash scripts/run_vision_chat.sh
默认情况下,mesh_dim
参数将所有设备置于 tp
(张量并行)。对于较长的序列,您可能需要包含 sp
,它是 mesh_dim
中的最后一个维度。
运行针评估时,您可能需要根据模型调整脚本中的 theta
和 max_sequence_length
参数。以下显示了每个模型的正确值。
LWM-Text-128K / LWM-Text-Chat-128K | LWM-Text-256K / LWM-Text-Chat-256K | LWM-Text-512K / LWM-Text-Chat-512K | LWM-Text-1M / LWM-Text-Chat-1M | |
---|---|---|---|---|
theta | 10000000 | 10000000 | 25000000 | 50000000 |
max_sequence_length | 131072 | 262144 | 524288 | 1048576 |
以下是填写脚本(run_sample_video.sh
)的示例:
#! /bin/bash export SCRIPT_DIR="$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" export PROJECT_DIR="$( cd -- "$( dirname -- "$SCRIPT_DIR" )" &> /dev/null && pwd )" cd $PROJECT_DIR export PYTHONPATH="$PYTHONPATH:$PROJECT_DIR" export llama_tokenizer_path="LargeWorldModel/LWM-Text-1M" export vqgan_checkpoint="/path/to/ckpt/folder/vqgan" export lwm_checkpoint="params::/path/to/ckpt/folder/params" python3 -u -m lwm.vision_generation \ --prompt='城市上空的烟花' \ --output_file='fireworks.mp4' \ --temperature_image=1.0 \ --temperature_video=1.0 \ --top_k_image=8192 \ --top_k_video=1000 \ --cfg_scale_image=5.0 \ --cfg_scale_video=1.0 \ --vqgan_checkpoint="$vqgan_checkpoint" \ --n_frames=8 \ --mesh_dim='!1,1,-1,1' \ --dtype='fp32' \ --load_llama_config='7b' \ --update_llama_config="dict(sample_mode='vision',theta=50000000,max_sequence_length=32768,scan_attention=False,scan_query_chunk_size=128,scan_key_chunk_size=128,scan_mlp=False,scan_mlp_chunk_size=8192,scan_layers=True)" \ --load_checkpoint="$lwm_checkpoint" \ --tokenizer="$llama_tokenizer_path" read
运行 python scripts/create_needle_data.py
目前仅支持文本和文本聊天模型进行 PyTorch 推理。PyTorch 模型可以作为 Hugging Face 的 LlamaForCausalLM
模型加载。运行 python scripts/sample_pyt.py
进行采样。您可能需要单独安装 torch
。
有关代码库的更多详细信息,请参阅 data.md 和 sharding.md。 data.md 提供了有关数据处理的详细信息,而 sharding.md 提供了有关分片和并行性的详细信息。
这是基于 RingAttention 的 代码库,增加了视觉语言训练所需的功能。训练和推理已在 TPUv3 和 TPUv4 上进行了测试。
如果您遇到错误,请在 GitHub 上提出问题!
如果您使用此代码库,或者发现我们的工作有价值,请引用:
@article{liu2023world,
title={World Model on Million-Length Video and Language with RingAttention},
author={Liu, Hao and Yan, Wilson and Zaharia, Matei and Abbeel, Pieter},
journal={arXiv preprint},
year={2024},
}
@article{liu2023ring,
title={Ring Attention with Blockwise Transformers for Near-Infinite Context},
author={Liu, Hao and Zaharia, Matei and Abbeel, Pieter},
journal={International Conference on Learning Representations},
year={2024}
}
@article{liu2023blockwise,
title={Blockwise Parallel Transformer for Large Context Models},
author={Liu, Hao and Abbeel, Pieter},
journal={Advances in neural information processing systems},
year={2023}
}
LWM 的代码根据 Apache 2.0 许可证发布。有关更多详细信息,请参阅 LICENSE。模型根据 Llama-2 许可证发布。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和 多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改 写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译 工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等 内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号