ChatKBQA

ChatKBQA

知识库问答的生成,检索框架

ChatKBQA是一个创新的知识库问答框架,采用生成-检索方法。该框架首先利用微调的大语言模型生成逻辑形式,再通过无监督检索替换实体和关系,有效提升了生成和检索效果。ChatKBQA解决了知识检索效率、错误传播和方法复杂性等问题,在WebQSP和CWQ基准测试中展现出优异性能。

KBQALLM知识库问答语义解析知识检索Github开源项目

ChatKBQA

Official resources of "ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models". Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, Luu Anh Tuan. Findings of ACL 2024 [paper].

Paper Blog Tool Report Report PWC

<!-- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/chatkbqa-a-generate-then-retrieve-framework/knowledge-base-question-answering-on)](https://paperswithcode.com/sota/knowledge-base-question-answering-on?p=chatkbqa-a-generate-then-retrieve-framework) -->

Overview

General Setup

Environment Setup

conda create -n chatkbqa python=3.8
conda activate chatkbqa
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirement.txt

Freebase KG Setup

Below steps are according to Freebase Virtuoso Setup.

How to install virtuoso backend for Freebase KG.

  1. Clone from dki-lab/Freebase-Setup:
cd Freebase-Setup
  1. Processed Freebase Virtuoso DB file can be downloaded from Dropbox or Baidu Netdisk (WARNING: 53G+ disk space is needed):
tar -zxvf virtuoso_db.zip
  1. Managing the Virtuoso service:

To start service at localhost:3001/sparql:

python3 virtuoso.py start 3001 -d virtuoso_db

and to stop a currently running service at the same port:

python3 virtuoso.py stop 3001

A server with at least 100 GB RAM is recommended.

Download FACC1 mentions for Entity Retrieval.

  • Download the mention information (including processed FACC1 mentions and all entity alias in Freebase) from OneDrive or Baidu Netdisk to data/common_data/facc1/.
ChatKBQA/
└── data/
    ├── common_data/                  
        ├── facc1/   
            ├── entity_list_file_freebase_complete_all_mention
            └── surface_map_file_freebase_complete_all_mention                                           

Dataset

Experiments are conducted on 2 KBQA benchmarks WebQSP, CWQ.

WebQSP

WebQSP dataset has been downloaded under data/WebQSP/origin.

ChatKBQA/
└── data/
    ├── WebQSP                  
        ├── origin                    
            ├── WebQSP.train.json                    
            └── WebQSP.test.json                                       

CWQ

CWQ dataset has been downloaded under data/CWQ/origin.

ChatKBQA/
└── data/
    ├── CWQ                 
        ├── origin                    
            ├── ComplexWebQuestions_train.json                   
            ├── ComplexWebQuestions_dev.json      
            └── ComplexWebQuestions_test.json                              

Data Processing

(1) Parse SPARQL queries to S-expressions

  • WebQSP:

Run python parse_sparql_webqsp.py and the augmented dataset files are saved as data/WebQSP/sexpr/WebQSP.test[train].json.

  • CWQ:

Run python parse_sparql_cwq.py and the augmented dataset files are saved as data/CWQ/sexpr/CWQ.test[train].json.

(2) Prepare data for training and evaluation

  • WebQSP:

Run python data_process.py --action merge_all --dataset WebQSP --split test and python data_process.py --action merge_all --dataset WebQSP --split train. The merged data file will be saved as data/WebQSP/generation/merged/WebQSP_test[train].json.

Run python data_process.py --action get_type_label_map --dataset WebQSP --split train. The merged data file will be saved as data/WebQSP/generation/label_maps/WebQSP_train_type_label_map.json.

  • CWQ:

Run python data_process.py --action merge_all --dataset CWQ --split test and python data_process.py --action merge_all --dataset CWQ --split train. The merged data file will be saved as data/CWQ/generation/merged/CWQ_test[train].json.

Run python data_process.py --action get_type_label_map --dataset CWQ --split train. The merged data file will be saved as data/CWQ/generation/label_maps/CWQ_train_type_label_map.json.

Note: You can also get the ChatKBQA processed data from TeraBox or Baidu Netdisk, which should be set in data/.

ChatKBQA/
└── data/
    ├── CWQ/                 
        ├── generation/    
        ├── origin/
        └── sexpr/  
    └── WebQSP/                 
        ├── generation/    
        ├── origin/
        └── sexpr/                                               

(3) Prepare data for LLM model

  • WebQSP:

Run python process_NQ.py --dataset_type WebQSP. The merged data file will be saved as LLMs/data/WebQSP_Freebase_NQ_test[train]/examples.json.

  • CWQ:

Run python process_NQ.py --dataset_type CWQ The merged data file will be saved as LLMs/data/CWQ_Freebase_NQ_test[train]/examples.json.

Note: You can also get the processed ChatKBQA SFT data from TeraBox or Baidu Netdisk, which should be set in LLMs/data.

ChatKBQA/
└── LLMs/
    ├── data/                 
        ├── CWQ_Freebase_NQ_test/                    
        ├── CWQ_Freebase_NQ_train/    
        ├── WebQSP_Freebase_NQ_test/                 
        ├── WebQSP_Freebase_NQ_train/      
        └── dataset_info.json                              

Fine-tuning, Retrieval and Evaluation

The following is an example of LLaMa2-7b fine-tuning and retrieval (num_beam = 15) on WebQSP and LLaMa2-13b fine-tuning and retrieval (num_beam = 8) on CWQ, respectively.

(1) Train and test LLM model for Logical Form Generation

  • WebQSP:

Train LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-2-7b-hf --do_train --dataset_dir LLMs/data --dataset WebQSP_Freebase_NQ_train --template llama2 --finetuning_type lora --lora_target q_proj,v_proj --output_dir Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 100.0 --plot_loss --fp16 >> train_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &

Beam-setting LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/beam_output_eva.py --model_name_or_path meta-llama/Llama-2-7b-hf --dataset_dir LLMs/data --dataset WebQSP_Freebase_NQ_test --template llama2 --finetuning_type lora --checkpoint_dir Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/checkpoint --num_beams 15 >> predbeam_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
python run_generator_final.py --data_file_name Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/generated_predictions.jsonl
  • CWQ:

Train LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=2 nohup python -u LLMs/LLaMA/src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-2-13b-hf --do_train --dataset_dir LLMs/data --dataset CWQ_Freebase_NQ_train --template default --finetuning_type lora --lora_target q_proj,v_proj --output_dir Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 10.0 --plot_loss --fp16 >> train_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &

Beam-setting LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/beam_output_eva.py --model_name_or_path meta-llama/Llama-2-13b-hf --dataset_dir LLMs/data --dataset CWQ_Freebase_NQ_test --template default --finetuning_type lora --checkpoint_dir Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/checkpoint --num_beams 8 >> predbeam_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &
python run_generator_final.py --data_file_name Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/generated_predictions.jsonl

(2) Evaluate KBQA result with Retrieval

  • WebQSP:

Evaluate KBQA result with entity-retrieval and relation-retrieval:

CUDA_VISIBLE_DEVICES=1 nohup python -u eval_final.py --dataset WebQSP --pred_file Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/beam_test_top_k_predictions.json >> predfinal_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &

Evaluate KBQA result with golden-entities and relation-retrieval:

CUDA_VISIBLE_DEVICES=4 nohup python -u eval_final.py --dataset WebQSP --pred_file Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/beam_test_top_k_predictions.json --golden_ent >> predfinalgoldent_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
  • CWQ:

Evaluate KBQA result with entity-retrieval and relation-retrieval:

CUDA_VISIBLE_DEVICES=4 nohup python -u eval_final_cwq.py --dataset CWQ --pred_file Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/beam_test_top_k_predictions.json >> predfinal_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &

Evaluate KBQA result with golden-entities and relation-retrieval:

CUDA_VISIBLE_DEVICES=5 nohup python -u eval_final_cwq.py --dataset CWQ --pred_file Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/beam_test_top_k_predictions.json --golden_ent >> predfinalgoldent_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &

Note: You can also get the ChatKBQA checkpoints and evaluations from TeraBox or Baidu Netdisk, which should be set in Reading/.

ChatKBQA/
└── Reading/
    ├── LLaMA2-7b/                 
        └── WebQSP_Freebase_NQ_lora_epoch100/  
            ├── checkpoint/    
            └── evaluation_beam/  
    └── LLaMA2-13b/                 
        └── CWQ_Freebase_NQ_lora_epoch10/  
            ├── checkpoint/    
            └── evaluation_beam/                                              

BibTex

If you find this work is helpful for your research, please cite:

@inproceedings{luo2024chatkbqa, title = "{C}hat{KBQA}: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models", author = "Luo, Haoran and E, Haihong and Tang, Zichen and Peng, Shiyao and Guo, Yikai and Zhang, Wentai and Ma, Chenghao and Dong, Guanting and Song, Meina and Lin, Wei and Zhu, Yifan and Luu, Anh Tuan", editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", booktitle = "Findings of the Association for Computational Linguistics ACL 2024", month = aug, year = "2024", address = "Bangkok, Thailand and virtual meeting", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-acl.122", pages = "2039--2056", abstract = "Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多