ChatKBQA

ChatKBQA

知识库问答的生成,检索框架

ChatKBQA是一个创新的知识库问答框架,采用生成-检索方法。该框架首先利用微调的大语言模型生成逻辑形式,再通过无监督检索替换实体和关系,有效提升了生成和检索效果。ChatKBQA解决了知识检索效率、错误传播和方法复杂性等问题,在WebQSP和CWQ基准测试中展现出优异性能。

KBQALLM知识库问答语义解析知识检索Github开源项目

ChatKBQA

Official resources of "ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models". Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, Luu Anh Tuan. Findings of ACL 2024 [paper].

Paper Blog Tool Report Report PWC

<!-- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/chatkbqa-a-generate-then-retrieve-framework/knowledge-base-question-answering-on)](https://paperswithcode.com/sota/knowledge-base-question-answering-on?p=chatkbqa-a-generate-then-retrieve-framework) -->

Overview

General Setup

Environment Setup

conda create -n chatkbqa python=3.8
conda activate chatkbqa
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirement.txt

Freebase KG Setup

Below steps are according to Freebase Virtuoso Setup.

How to install virtuoso backend for Freebase KG.

  1. Clone from dki-lab/Freebase-Setup:
cd Freebase-Setup
  1. Processed Freebase Virtuoso DB file can be downloaded from Dropbox or Baidu Netdisk (WARNING: 53G+ disk space is needed):
tar -zxvf virtuoso_db.zip
  1. Managing the Virtuoso service:

To start service at localhost:3001/sparql:

python3 virtuoso.py start 3001 -d virtuoso_db

and to stop a currently running service at the same port:

python3 virtuoso.py stop 3001

A server with at least 100 GB RAM is recommended.

Download FACC1 mentions for Entity Retrieval.

  • Download the mention information (including processed FACC1 mentions and all entity alias in Freebase) from OneDrive or Baidu Netdisk to data/common_data/facc1/.
ChatKBQA/
└── data/
    ├── common_data/                  
        ├── facc1/   
            ├── entity_list_file_freebase_complete_all_mention
            └── surface_map_file_freebase_complete_all_mention                                           

Dataset

Experiments are conducted on 2 KBQA benchmarks WebQSP, CWQ.

WebQSP

WebQSP dataset has been downloaded under data/WebQSP/origin.

ChatKBQA/
└── data/
    ├── WebQSP                  
        ├── origin                    
            ├── WebQSP.train.json                    
            └── WebQSP.test.json                                       

CWQ

CWQ dataset has been downloaded under data/CWQ/origin.

ChatKBQA/
└── data/
    ├── CWQ                 
        ├── origin                    
            ├── ComplexWebQuestions_train.json                   
            ├── ComplexWebQuestions_dev.json      
            └── ComplexWebQuestions_test.json                              

Data Processing

(1) Parse SPARQL queries to S-expressions

  • WebQSP:

Run python parse_sparql_webqsp.py and the augmented dataset files are saved as data/WebQSP/sexpr/WebQSP.test[train].json.

  • CWQ:

Run python parse_sparql_cwq.py and the augmented dataset files are saved as data/CWQ/sexpr/CWQ.test[train].json.

(2) Prepare data for training and evaluation

  • WebQSP:

Run python data_process.py --action merge_all --dataset WebQSP --split test and python data_process.py --action merge_all --dataset WebQSP --split train. The merged data file will be saved as data/WebQSP/generation/merged/WebQSP_test[train].json.

Run python data_process.py --action get_type_label_map --dataset WebQSP --split train. The merged data file will be saved as data/WebQSP/generation/label_maps/WebQSP_train_type_label_map.json.

  • CWQ:

Run python data_process.py --action merge_all --dataset CWQ --split test and python data_process.py --action merge_all --dataset CWQ --split train. The merged data file will be saved as data/CWQ/generation/merged/CWQ_test[train].json.

Run python data_process.py --action get_type_label_map --dataset CWQ --split train. The merged data file will be saved as data/CWQ/generation/label_maps/CWQ_train_type_label_map.json.

Note: You can also get the ChatKBQA processed data from TeraBox or Baidu Netdisk, which should be set in data/.

ChatKBQA/
└── data/
    ├── CWQ/                 
        ├── generation/    
        ├── origin/
        └── sexpr/  
    └── WebQSP/                 
        ├── generation/    
        ├── origin/
        └── sexpr/                                               

(3) Prepare data for LLM model

  • WebQSP:

Run python process_NQ.py --dataset_type WebQSP. The merged data file will be saved as LLMs/data/WebQSP_Freebase_NQ_test[train]/examples.json.

  • CWQ:

Run python process_NQ.py --dataset_type CWQ The merged data file will be saved as LLMs/data/CWQ_Freebase_NQ_test[train]/examples.json.

Note: You can also get the processed ChatKBQA SFT data from TeraBox or Baidu Netdisk, which should be set in LLMs/data.

ChatKBQA/
└── LLMs/
    ├── data/                 
        ├── CWQ_Freebase_NQ_test/                    
        ├── CWQ_Freebase_NQ_train/    
        ├── WebQSP_Freebase_NQ_test/                 
        ├── WebQSP_Freebase_NQ_train/      
        └── dataset_info.json                              

Fine-tuning, Retrieval and Evaluation

The following is an example of LLaMa2-7b fine-tuning and retrieval (num_beam = 15) on WebQSP and LLaMa2-13b fine-tuning and retrieval (num_beam = 8) on CWQ, respectively.

(1) Train and test LLM model for Logical Form Generation

  • WebQSP:

Train LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-2-7b-hf --do_train --dataset_dir LLMs/data --dataset WebQSP_Freebase_NQ_train --template llama2 --finetuning_type lora --lora_target q_proj,v_proj --output_dir Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 100.0 --plot_loss --fp16 >> train_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &

Beam-setting LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/beam_output_eva.py --model_name_or_path meta-llama/Llama-2-7b-hf --dataset_dir LLMs/data --dataset WebQSP_Freebase_NQ_test --template llama2 --finetuning_type lora --checkpoint_dir Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/checkpoint --num_beams 15 >> predbeam_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
python run_generator_final.py --data_file_name Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/generated_predictions.jsonl
  • CWQ:

Train LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=2 nohup python -u LLMs/LLaMA/src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-2-13b-hf --do_train --dataset_dir LLMs/data --dataset CWQ_Freebase_NQ_train --template default --finetuning_type lora --lora_target q_proj,v_proj --output_dir Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 10.0 --plot_loss --fp16 >> train_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &

Beam-setting LLMs for Logical Form Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/beam_output_eva.py --model_name_or_path meta-llama/Llama-2-13b-hf --dataset_dir LLMs/data --dataset CWQ_Freebase_NQ_test --template default --finetuning_type lora --checkpoint_dir Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/checkpoint --num_beams 8 >> predbeam_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &
python run_generator_final.py --data_file_name Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/generated_predictions.jsonl

(2) Evaluate KBQA result with Retrieval

  • WebQSP:

Evaluate KBQA result with entity-retrieval and relation-retrieval:

CUDA_VISIBLE_DEVICES=1 nohup python -u eval_final.py --dataset WebQSP --pred_file Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/beam_test_top_k_predictions.json >> predfinal_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &

Evaluate KBQA result with golden-entities and relation-retrieval:

CUDA_VISIBLE_DEVICES=4 nohup python -u eval_final.py --dataset WebQSP --pred_file Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/beam_test_top_k_predictions.json --golden_ent >> predfinalgoldent_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
  • CWQ:

Evaluate KBQA result with entity-retrieval and relation-retrieval:

CUDA_VISIBLE_DEVICES=4 nohup python -u eval_final_cwq.py --dataset CWQ --pred_file Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/beam_test_top_k_predictions.json >> predfinal_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &

Evaluate KBQA result with golden-entities and relation-retrieval:

CUDA_VISIBLE_DEVICES=5 nohup python -u eval_final_cwq.py --dataset CWQ --pred_file Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/beam_test_top_k_predictions.json --golden_ent >> predfinalgoldent_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &

Note: You can also get the ChatKBQA checkpoints and evaluations from TeraBox or Baidu Netdisk, which should be set in Reading/.

ChatKBQA/
└── Reading/
    ├── LLaMA2-7b/                 
        └── WebQSP_Freebase_NQ_lora_epoch100/  
            ├── checkpoint/    
            └── evaluation_beam/  
    └── LLaMA2-13b/                 
        └── CWQ_Freebase_NQ_lora_epoch10/  
            ├── checkpoint/    
            └── evaluation_beam/                                              

BibTex

If you find this work is helpful for your research, please cite:

@inproceedings{luo2024chatkbqa, title = "{C}hat{KBQA}: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models", author = "Luo, Haoran and E, Haihong and Tang, Zichen and Peng, Shiyao and Guo, Yikai and Zhang, Wentai and Ma, Chenghao and Dong, Guanting and Song, Meina and Lin, Wei and Zhu, Yifan and Luu, Anh Tuan", editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", booktitle = "Findings of the Association for Computational Linguistics ACL 2024", month = aug, year = "2024", address = "Bangkok, Thailand and virtual meeting", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-acl.122", pages = "2039--2056", abstract = "Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多