Official resources of "ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models". Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, Luu Anh Tuan. Findings of ACL 2024 [paper].
<!-- [](https://paperswithcode.com/sota/knowledge-base-question-answering-on?p=chatkbqa-a-generate-then-retrieve-framework) -->

conda create -n chatkbqa python=3.8
conda activate chatkbqa
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirement.txt
Below steps are according to Freebase Virtuoso Setup.
dki-lab/Freebase-Setup:cd Freebase-Setup
tar -zxvf virtuoso_db.zip
To start service at localhost:3001/sparql:
python3 virtuoso.py start 3001 -d virtuoso_db
and to stop a currently running service at the same port:
python3 virtuoso.py stop 3001
A server with at least 100 GB RAM is recommended.
data/common_data/facc1/.ChatKBQA/
└── data/
├── common_data/
├── facc1/
├── entity_list_file_freebase_complete_all_mention
└── surface_map_file_freebase_complete_all_mention
Experiments are conducted on 2 KBQA benchmarks WebQSP, CWQ.
WebQSP dataset has been downloaded under data/WebQSP/origin.
ChatKBQA/
└── data/
├── WebQSP
├── origin
├── WebQSP.train.json
└── WebQSP.test.json
CWQ dataset has been downloaded under data/CWQ/origin.
ChatKBQA/
└── data/
├── CWQ
├── origin
├── ComplexWebQuestions_train.json
├── ComplexWebQuestions_dev.json
└── ComplexWebQuestions_test.json
(1) Parse SPARQL queries to S-expressions
Run python parse_sparql_webqsp.py and the augmented dataset files are saved as data/WebQSP/sexpr/WebQSP.test[train].json.
Run python parse_sparql_cwq.py and the augmented dataset files are saved as data/CWQ/sexpr/CWQ.test[train].json.
(2) Prepare data for training and evaluation
Run python data_process.py --action merge_all --dataset WebQSP --split test and python data_process.py --action merge_all --dataset WebQSP --split train. The merged data file will be saved as data/WebQSP/generation/merged/WebQSP_test[train].json.
Run python data_process.py --action get_type_label_map --dataset WebQSP --split train. The merged data file will be saved as data/WebQSP/generation/label_maps/WebQSP_train_type_label_map.json.
Run python data_process.py --action merge_all --dataset CWQ --split test and python data_process.py --action merge_all --dataset CWQ --split train. The merged data file will be saved as data/CWQ/generation/merged/CWQ_test[train].json.
Run python data_process.py --action get_type_label_map --dataset CWQ --split train. The merged data file will be saved as data/CWQ/generation/label_maps/CWQ_train_type_label_map.json.
Note: You can also get the ChatKBQA processed data from TeraBox or Baidu Netdisk, which should be set in data/.
ChatKBQA/
└── data/
├── CWQ/
├── generation/
├── origin/
└── sexpr/
└── WebQSP/
├── generation/
├── origin/
└── sexpr/
(3) Prepare data for LLM model
Run python process_NQ.py --dataset_type WebQSP. The merged data file will be saved as LLMs/data/WebQSP_Freebase_NQ_test[train]/examples.json.
Run python process_NQ.py --dataset_type CWQ The merged data file will be saved as LLMs/data/CWQ_Freebase_NQ_test[train]/examples.json.
Note: You can also get the processed ChatKBQA SFT data from TeraBox or Baidu Netdisk, which should be set in LLMs/data.
ChatKBQA/
└── LLMs/
├── data/
├── CWQ_Freebase_NQ_test/
├── CWQ_Freebase_NQ_train/
├── WebQSP_Freebase_NQ_test/
├── WebQSP_Freebase_NQ_train/
└── dataset_info.json
The following is an example of LLaMa2-7b fine-tuning and retrieval (num_beam = 15) on WebQSP and LLaMa2-13b fine-tuning and retrieval (num_beam = 8) on CWQ, respectively.
(1) Train and test LLM model for Logical Form Generation
Train LLMs for Logical Form Generation:
CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-2-7b-hf --do_train --dataset_dir LLMs/data --dataset WebQSP_Freebase_NQ_train --template llama2 --finetuning_type lora --lora_target q_proj,v_proj --output_dir Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 100.0 --plot_loss --fp16 >> train_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
Beam-setting LLMs for Logical Form Generation:
CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/beam_output_eva.py --model_name_or_path meta-llama/Llama-2-7b-hf --dataset_dir LLMs/data --dataset WebQSP_Freebase_NQ_test --template llama2 --finetuning_type lora --checkpoint_dir Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/checkpoint --num_beams 15 >> predbeam_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
python run_generator_final.py --data_file_name Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/generated_predictions.jsonl
Train LLMs for Logical Form Generation:
CUDA_VISIBLE_DEVICES=2 nohup python -u LLMs/LLaMA/src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-2-13b-hf --do_train --dataset_dir LLMs/data --dataset CWQ_Freebase_NQ_train --template default --finetuning_type lora --lora_target q_proj,v_proj --output_dir Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 10.0 --plot_loss --fp16 >> train_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &
Beam-setting LLMs for Logical Form Generation:
CUDA_VISIBLE_DEVICES=3 nohup python -u LLMs/LLaMA/src/beam_output_eva.py --model_name_or_path meta-llama/Llama-2-13b-hf --dataset_dir LLMs/data --dataset CWQ_Freebase_NQ_test --template default --finetuning_type lora --checkpoint_dir Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/checkpoint --num_beams 8 >> predbeam_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &
python run_generator_final.py --data_file_name Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/generated_predictions.jsonl
(2) Evaluate KBQA result with Retrieval
Evaluate KBQA result with entity-retrieval and relation-retrieval:
CUDA_VISIBLE_DEVICES=1 nohup python -u eval_final.py --dataset WebQSP --pred_file Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/beam_test_top_k_predictions.json >> predfinal_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
Evaluate KBQA result with golden-entities and relation-retrieval:
CUDA_VISIBLE_DEVICES=4 nohup python -u eval_final.py --dataset WebQSP --pred_file Reading/LLaMA2-7b/WebQSP_Freebase_NQ_lora_epoch100/evaluation_beam/beam_test_top_k_predictions.json --golden_ent >> predfinalgoldent_LLaMA2-7b_WebQSP_Freebase_NQ_lora_epoch100.txt 2>&1 &
Evaluate KBQA result with entity-retrieval and relation-retrieval:
CUDA_VISIBLE_DEVICES=4 nohup python -u eval_final_cwq.py --dataset CWQ --pred_file Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/beam_test_top_k_predictions.json >> predfinal_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &
Evaluate KBQA result with golden-entities and relation-retrieval:
CUDA_VISIBLE_DEVICES=5 nohup python -u eval_final_cwq.py --dataset CWQ --pred_file Reading/LLaMA2-13b/CWQ_Freebase_NQ_lora_epoch10/evaluation_beam/beam_test_top_k_predictions.json --golden_ent >> predfinalgoldent_LLaMA2-13b_CWQ_Freebase_NQ_lora_epoch10.txt 2>&1 &
Note: You can also get the ChatKBQA checkpoints and evaluations from TeraBox or Baidu Netdisk, which should be set in Reading/.
ChatKBQA/
└── Reading/
├── LLaMA2-7b/
└── WebQSP_Freebase_NQ_lora_epoch100/
├── checkpoint/
└── evaluation_beam/
└── LLaMA2-13b/
└── CWQ_Freebase_NQ_lora_epoch10/
├── checkpoint/
└── evaluation_beam/
If you find this work is helpful for your research, please cite:
@inproceedings{luo2024chatkbqa, title = "{C}hat{KBQA}: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models", author = "Luo, Haoran and E, Haihong and Tang, Zichen and Peng, Shiyao and Guo, Yikai and Zhang, Wentai and Ma, Chenghao and Dong, Guanting and Song, Meina and Lin, Wei and Zhu, Yifan and Luu, Anh Tuan", editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", booktitle = "Findings of the Association for Computational Linguistics ACL 2024", month = aug, year = "2024", address = "Bangkok, Thailand and virtual meeting", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-acl.122", pages = "2039--2056", abstract = "Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方 式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的 流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号