deep-significance

deep-significance

深度神经网络显著性测试的开源解决方案

deep-significance 提供完全测试的显著性测试功能,包括几乎随机顺序(ASO)方法、bootstrap 检验和置换随机化方法。结合 Bonferroni 校正和样本大小分析,兼容 PyTorch、TensorFlow 和 NumPy 数据结构。支持多模型、多数据集和样本级别的比较,帮助用户准确评估模型性能,避免因随机因素导致的错误结论。

deep-significance深度学习显著性检验神经网络统计学Github开源项目

deep-significance: 深度神经网络显著性测试工具介绍

项目背景

近年来,深度学习取得了显著的进展,但在许多实验研究中,统计假设检验并未得到充分应用。研究人员通常仅通过一些性能指标来得出结论,这不足以准确地比较不同的模型或算法。这是因为神经网络有复杂的特性,它们的性能受到超参数、训练过程中的随机性和其他因素的影响。因此,单纯依赖少量指标或其平均值无法有效比较模型间的优劣。

项目目标

为了解决这一问题,deep-significance 项目提供了深度神经网络显著性测试的完整工具集。该项目通过重实现一些经典的统计显著性测试方法,为用户提供简单且可靠的工具来进行模型性能比较。主要功能包括:

  • 统计显著性测试,如几乎随机顺序(ASO)、bootstrap 方法和置换随机化。
  • 处理数据集多个比较问题的 Bonferroni 校正。
  • bootstrap 功率分析和样本量确定工具。

这些功能经过全面测试,与常用的深度学习数据结构(如 PyTorch、Tensorflow 张量以及 NumPy 和 Jax 数组)兼容。

安装流程

用户可以通过以下命令轻松安装本软件包:

pip3 install deepsig

或者,用户也可以选择从 GitHub 上克隆代码库进行本地安装:

git clone https://github.com/Kaleidophon/deep-significance.git cd deep-significance pip3 install -e .

使用示例

场景1:比较两个模型的多次运行

假设我们有两组分数,分别由运行多次的两个模型产生,使用 ASO 测试可以判断哪个模型表现更好:

import numpy as np from deepsig import aso seed = 1234 np.random.seed(seed) # 模拟分数 N = 5 # 随机种子数量 my_model_scores = np.random.normal(loc=0.9, scale=0.8, size=N) baseline_scores = np.random.normal(loc=0, scale=1, size=N) min_eps = aso(my_model_scores, baseline_scores, seed=seed) # min_eps = 0.225,说明 A 比 B 好

场景2:跨数据集比较多次运行

当跨多个数据集比较模型时,需要对每个数据集分别设定一个零假设,并通过 Bonferroni 校正调整显著性阈值:

import numpy as np from deepsig import aso seed = 1234 np.random.seed(seed) # 模拟三个数据集的分数 M = 3 # 数据集数量 N = 5 # 随机种子数量 my_model_scores_per_dataset = [np.random.normal(loc=0.3, scale=0.8, size=N) for _ in range(M)] baseline_scores_per_dataset = [np.random.normal(loc=0, scale=1, size=N) for _ in range(M)] # 实施 Bonferroni 校正后计算 eps_min eps_min = [aso(a, b, confidence_level=0.95, num_comparisons=M, seed=seed) for a, b in zip(my_model_scores_per_dataset, baseline_scores_per_dataset)]

其他功能

deep-significance 项目还提供多模型比较、样本级别比较、采样不确定性减少分析及支持多线程并行计算的 ASO 测试等功能。此外,该工具兼容 PyTorch、Tensorflow、Jax 和 NumPy 数据结构,并配备种子设置以确保重复实验的可再现性。

总结

deep-significance 通过为深度学习研究人员提供一整套显著性测试工具,帮助提升模型比较的科学性和准确性,从而推动领域的健康发展。这一包作为公开项目,接受贡献并鼓励在相关研究中使用。

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多