ReinforcementLearning.jl

ReinforcementLearning.jl

高性能Julia强化学习框架

ReinforcementLearning.jl是Julia语言开发的强化学习框架,提供精心设计的组件和接口。研究人员可轻松实现新算法、进行基准测试和算法比较。框架支持从传统表格方法到深度强化学习,注重实验可重复性。其核心设计原则包括可重用性、可扩展性和易用性,适合各类强化学习实验和研究。

ReinforcementLearning.jl强化学习Julia开源项目机器学习Github
<!-- ```@raw html --> <div align="center"> <p> <img src="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/raw/main/docs/src/assets/logo.svg?sanitize=true" width="320px"> </p> <p> <a href="https://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast">"Make It Work Make It Right Make It Fast"</a> </p> <p> <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/actions?query=workflow%3ACI"><img src="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/workflows/CI/badge.svg"></a> <a href="https://juliahub.com/ui/Packages/ReinforcementLearning/6l2TO"><img src="https://juliahub.com/docs/ReinforcementLearning/pkgeval.svg"></a> <a href="https://juliahub.com/ui/Packages/ReinforcementLearning/6l2TO"><img src="https://juliahub.com/docs/ReinforcementLearning/version.svg"></a> <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/blob/main/LICENSE.md"><img src="http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat"></a> <a href="https://julialang.org/slack/"><img src="https://img.shields.io/badge/Chat%20on%20Slack-%23reinforcement--learnin-ff69b4"></a> <a href="https://github.com/SciML/ColPrac"><img src="https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet"></a> </p> </div> <!-- ``` -->

ReinforcementLearning.jl, as the name says, is a package for reinforcement learning research in Julia.

Our design principles are:

  • Reusability and extensibility: Provide elaborately designed components and interfaces to help users implement new algorithms.
  • Easy experimentation: Make it easy for new users to run benchmark experiments, compare different algorithms, evaluate and diagnose agents.
  • Reproducibility: Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms.

🏹 Get Started

julia> ] add ReinforcementLearning julia> using ReinforcementLearning julia> run( RandomPolicy(), CartPoleEnv(), StopAfterNSteps(1_000), TotalRewardPerEpisode() )

The above simple example demonstrates four core components in a general reinforcement learning experiment:

Check out the tutorial page to learn how these four components are assembled together to solve many interesting problems. We also write blog occasionally to explain the implementation details of some algorithms. Among them, the most recommended one is An Introduction to ReinforcementLearning.jl, which explains the design idea of this package.

🙋 Why ReinforcementLearning.jl?

🚀 Fast Speed

[TODO:]

🧰 Feature Rich

[TODO:]

-->

<!-- ``` -->

🌲 Project Structure

ReinforcementLearning.jl itself is just a wrapper around several other subpackages. The relationship between them is depicted below:

<!-- ```@raw html --> <pre>+-----------------------------------------------------------------------------------+ | | | <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl">ReinforcementLearning.jl</a> | | | | +------------------------------+ | | | <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/tree/main/src/ReinforcementLearningBase">ReinforcementLearningBase.jl</a> | | | +----|-------------------------+ | | | | | | +--------------------------------------+ | | +----&gt;+ <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/tree/main/src/ReinforcementLearningEnvironments">ReinforcementLearningEnvironments.jl</a> | | | | +--------------------------------------+ | | | | | | +------------------------------+ | | +----&gt;+ <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/tree/main/src/ReinforcementLearningCore">ReinforcementLearningCore.jl</a> | | | +----|-------------------------+ | | | | | | +-----------------------------+ | | +----&gt;+ <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/tree/main/src/ReinforcementLearningZoo">ReinforcementLearningZoo.jl</a> | | | +----|------------------------+ | | | | | | +-------------------------------------+ | | +----&gt;+ <a href="https://github.com/JuliaReinforcementLearning/DistributedReinforcementLearning.jl">DistributedReinforcementLearning.jl</a> | | | +-------------------------------------+ | | | +------|----------------------------------------------------------------------------+ | | +-------------------------------------+ +----&gt;+ <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/tree/main/src/ReinforcementLearningExperiments">ReinforcementLearningExperiments.jl</a> | | +-------------------------------------+ | | +----------------------------------------+ +----&gt;+ <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearningAnIntroduction.jl">ReinforcementLearningAnIntroduction.jl</a> | +----------------------------------------+ </pre> <!-- ``` -->

✋ Getting Help

Are you looking for help with ReinforcementLearning.jl? Here are ways to find help:

  1. Read the online documentation! Most likely the answer is already provided in an example or in the API documents. Search using the search bar in the upper left.
<!-- cspell:disable-next -->
  1. Chat with us in Julia Slack in the #reinforcement-learnin channel.
  2. Post a question in the Julia discourse forum in the category "Machine Learning" and use "reinforcement-learning" as a tag.
  3. For issues with unexpected behavior or defects in ReinforcementLearning.jl, then please open an issue on the ReinforcementLearning GitHub page with a minimal working example and steps to reproduce.

🖖 Supporting

ReinforcementLearning.jl is a MIT licensed open source project with its ongoing development made possible by many contributors in their spare time. However, modern reinforcement learning research requires huge computing resource, which is unaffordable for individual contributors. So if you or your organization could provide the computing resource in some degree and would like to cooperate in some way, please contact us!

This package is written in pure Julia. Please consider supporting the JuliaLang org if you find this package useful. ❤

✍️ Citing

If you use ReinforcementLearning.jl in a scientific publication, we would appreciate references to the CITATION.bib.

✨ Contributors

Thanks goes to these wonderful people (emoji key):

<!-- ```@raw html --> <!-- cSpell:disable --> <!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tr> <td align="center"><a href="http://lcn.epfl.ch/~brea/"><img src="https://avatars.githubusercontent.com/u/12857162?v=4?s=100" width="100px;" alt=""/><br /><sub><b>jbrea</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=jbrea" title="Code">💻</a> <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=jbrea" title="Documentation">📖</a> <a href="#maintenance-jbrea" title="Maintenance">🚧</a></td> <td align="center"><a href="https://tianjun.me/"><img src="https://avatars.githubusercontent.com/u/5612003?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Jun Tian</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=findmyway" title="Code">💻</a> <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=findmyway" title="Documentation">📖</a> <a href="#maintenance-findmyway" title="Maintenance">🚧</a> <a href="#ideas-findmyway" title="Ideas, Planning, & Feedback">🤔</a></td> <td align="center"><a href="https://github.com/amanbh"><img src="https://avatars.githubusercontent.com/u/911313?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Aman Bhatia</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=amanbh" title="Documentation">📖</a></td> <td align="center"><a href="https://avt.im/"><img src="https://avatars.githubusercontent.com/u/4722472?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Alexander Terenin</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=aterenin" title="Code">💻</a></td> <td align="center"><a href="https://github.com/Sid-Bhatia-0"><img src="https://avatars.githubusercontent.com/u/32610387?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Sid-Bhatia-0</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=Sid-Bhatia-0" title="Code">💻</a></td> <td align="center"><a href="https://github.com/norci"><img src="https://avatars.githubusercontent.com/u/2986988?v=4?s=100" width="100px;" alt=""/><br /><sub><b>norci</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=norci" title="Code">💻</a> <a href="#maintenance-norci" title="Maintenance">🚧</a></td> <td align="center"><a href="https://github.com/sriram13m"><img src="https://avatars.githubusercontent.com/u/28051516?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Sriram</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=sriram13m" title="Code">💻</a></td> </tr> <tr> <td align="center"><a href="https://github.com/gpavanb1"><img src="https://avatars.githubusercontent.com/u/50511632?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Pavan B Govindaraju</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=gpavanb1" title="Code">💻</a></td> <td align="center"><a href="https://github.com/AlexLewandowski"><img src="https://avatars.githubusercontent.com/u/15149466?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Alex Lewandowski</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=AlexLewandowski" title="Code">💻</a></td> <td align="center"><a href="https://github.com/RajGhugare19"><img src="https://avatars.githubusercontent.com/u/62653460?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Raj Ghugare</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=RajGhugare19" title="Code">💻</a></td> <td align="center"><a href="https://github.com/rbange"><img src="https://avatars.githubusercontent.com/u/13252574?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Roman Bange</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=rbange" title="Code">💻</a></td> <td align="center"><a href="https://github.com/felixchalumeau"><img src="https://avatars.githubusercontent.com/u/49362657?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Felix Chalumeau</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=felixchalumeau" title="Code">💻</a></td> <td align="center"><a href="https://github.com/rishabhvarshney14"><img src="https://avatars.githubusercontent.com/u/53183977?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Rishabh Varshney</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=rishabhvarshney14" title="Code">💻</a></td> <td align="center"><a href="https://github.com/zsunberg"><img src="https://avatars.githubusercontent.com/u/4240491?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Zachary Sunberg</b></sub></a><br /><a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=zsunberg" title="Code">💻</a> <a href="https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/commits?author=zsunberg" title="Documentation">📖</a> <a href="#maintenance-zsunberg" title="Maintenance">🚧</a> <a href="#ideas-zsunberg" title="Ideas, Planning, & Feedback">🤔</a></td> </tr> <tr> <td align="center"><a href="https://www.cs.cmu.edu/~jlaurent/"><img

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多