Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices.
This TensorFlow implementation of an LSTM neural network can be used for time series forecasting. Successful prediction of a stock's future price can yield significant profits for investors.
Predicting stock prices is a complex task, as it is influenced by various factors such as market trends, political events, and economic indicators. The fluctuations in the stock prices are driven by the forces of supply and demand, which can be unpredictable at times. To identify patterns and trends in stock prices, deep learning techniques can be used for machine learning. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is specifically designed for sequence modeling and prediction. LSTM is capable of retaining information over an extended period of time, making it an ideal approach for predicting stock prices. As a result, RNNs are well-suited to time series data, where they process data step-by-step, maintaining an internal state where they store the information they have seen so far in a compressed form. Accurate prediction of a stock's future price can provide significant financial gain to investors.
To gather the necessary market data for our stock prediction model, we will utilize the yFinance library in Python. This library is designed specifically for downloading relevant information on a given ticker symbol from the Yahoo Finance Finance webpage. By using yFinance, we can easily access the latest market data and incorporate it into our model.
For our purposes, we will be using the ticker symbol "GOOG", which is a well-known technology company. Here's an example screenshot of the ticker symbol on the Yahoo Finance page:

To download the data info, we will need the yFinance library installed and then we will only need to perform the following operation to download all the relevant information of a given Stock using its ticker symbol. Please make sure you use the latest version of the library (pip install yfinance==0.2.33) as I have seen errors with previous versions.
Below is the output from the [download_market_data_info.py] file that is able to download financial data from Yahoo Finance.
C:\Users\thund\Source\Repos\stock-prediction-deep-neural-learning>python download_market_data_info.py Info { "52WeekChange": 0.26037383, "SandP52WeekChange": 0.034871936, "address1": "1600 Amphitheatre Parkway", "algorithm": null, "annualHoldingsTurnover": null, "annualReportExpenseRatio": null, "ask": 1432.77, "askSize": 1400, "averageDailyVolume10Day": 2011171, "averageVolume": 1857809, "averageVolume10days": 2011171, "beta": 1.068946, "beta3Year": null, "bid": 1432.16, "bidSize": 3000, "bookValue": 297.759, "category": null, "circulatingSupply": null, "city": "Mountain View", "companyOfficers": [], "country": "United States", "currency": "USD", "dateShortInterest": 1592179200, "dayHigh": 1441.19, "dayLow": 1409.82, "dividendRate": null, "dividendYield": null, "earningsQuarterlyGrowth": 0.027, "enterpriseToEbitda": 17.899, "enterpriseToRevenue": 5.187, "enterpriseValue": 864533741568, "exDividendDate": null, "exchange": "NMS", "exchangeTimezoneName": "America/New_York", "exchangeTimezoneShortName": "EDT", "expireDate": null, "fiftyDayAverage": 1417.009, "fiftyTwoWeekHigh": 1532.106, "fiftyTwoWeekLow": 1013.536, "fiveYearAverageReturn": null, "fiveYearAvgDividendYield": null, "floatShares": 613293304, "forwardEps": 55.05, "forwardPE": 26.028149, "fromCurrency": null, "fullTimeEmployees": 123048, "fundFamily": null, "fundInceptionDate": null, "gmtOffSetMilliseconds": "-14400000", "heldPercentInsiders": 0.05746, "heldPercentInstitutions": 0.7062, "industry": "Internet Content & Information", "isEsgPopulated": false, "lastCapGain": null, "lastDividendValue": null, "lastFiscalYearEnd": 1577750400, "lastMarket": null, "lastSplitDate": 1430092800, "lastSplitFactor": "10000000:10000000", "legalType": null, "logo_url": "https://logo.clearbit.com/abc.xyz", "longBusinessSummary": "Alphabet Inc. provides online advertising services in the United States, Europe, the Middle East, Africa, the Asia-Pacific, Canada, and Latin America. It offers performance and brand advertising services. The company operates through Google and Other Bets segments. The Google segment offers products, such as Ads, Android, Chrome, Google Cloud, Google Maps, Google Play, Hardware, Search, and YouTube, as well as technical infrastructure. It also offers digital content, cloud services, hardware devices, and other miscellaneous products and services. The Other Bets segment includes businesses, including Access, Calico, CapitalG, GV, Verily, Waymo, and X, as well as Internet and television services. Alphabet Inc. was founded in 1998 and is headquartered in Mountain View, California.", "longName": "Alphabet Inc.", "market": "us_market", "marketCap": 979650805760, "maxAge": 1, "maxSupply": null, "messageBoardId": "finmb_29096", "morningStarOverallRating": null, "morningStarRiskRating": null, "mostRecentQuarter": 1585612800, "navPrice": null, "netIncomeToCommon": 34522001408, "nextFiscalYearEnd": 1640908800, "open": 1411.1, "openInterest": null, "payoutRatio": 0, "pegRatio": 4.38, "phone": "650-253-0000", "previousClose": 1413.61, "priceHint": 2, "priceToBook": 4.812112, "priceToSalesTrailing12Months": 5.87754, "profitMargins": 0.20712, "quoteType": "EQUITY", "regularMarketDayHigh": 1441.19, "regularMarketDayLow": 1409.82, "regularMarketOpen": 1411.1, "regularMarketPreviousClose": 1413.61, "regularMarketPrice": 1411.1, "regularMarketVolume": 1084440, "revenueQuarterlyGrowth": null, "sector": "Communication Services", "sharesOutstanding": 336161984, "sharesPercentSharesOut": 0.0049, "sharesShort": 3371476, "sharesShortPreviousMonthDate": 1589500800, "sharesShortPriorMonth": 3462105, "shortName": "Alphabet Inc.", "shortPercentOfFloat": null, "shortRatio": 1.9, "startDate": null, "state": "CA", "strikePrice": null, "symbol": "GOOG", "threeYearAverageReturn": null, "toCurrency": null, "totalAssets": null, "tradeable": false, "trailingAnnualDividendRate": null, "trailingAnnualDividendYield": null, "trailingEps": 49.572, "trailingPE": 28.904415, "twoHundredDayAverage": 1352.9939, "volume": 1084440, "volume24Hr": null, "volumeAllCurrencies": null, "website": "http://www.abc.xyz", "yield": null, "ytdReturn": null, "zip": "94043" } ISIN - Major Holders 0 1 0 5.75% % of Shares Held by All Insider 1 70.62% % of Shares Held by Institutions 2 74.93% % of Float Held by Institutions 3 3304 Number of Institutions Holding Shares Institutional Holders Holder Shares Date Reported % Out Value 0 Vanguard Group, Inc. (The) 23162950 2020-03-30 0.0687 26934109889 1 Blackrock Inc. 20264225 2020-03-30 0.0601 23563443472 2 Price (T.Rowe) Associates Inc 12520058 2020-03-30 0.0371 14558448642 3 State Street Corporation 11814026 2020-03-30 0.0350 13737467573 4 FMR, LLC 8331868 2020-03-30 0.0247 9688379429 5 Capital International Investors 4555880 2020-03-30 0.0135 5297622822 6 Geode Capital Management, LLC 4403934 2020-03-30 0.0131 5120938494 7 Northern Trust Corporation 4017009 2020-03-30 0.0119 4671018235 8 JP Morgan Chase & Company 3707376 2020-03-30 0.0110 4310973886 9 AllianceBernstein, L.P. 3483382 2020-03-30 0.0103 4050511423 Dividents Series([], Name: Dividends, dtype: int64) Splits Date 2014-03-27 2.002 2015-04-27 1.000 Name: Stock Splits, dtype: float64 Actions Dividends Stock Splits Date 2014-03-27 0.0 2.002 2015-04-27 0.0 1.000 Calendar Empty DataFrame Columns: [] Index: [Earnings Date, Earnings Average, Earnings Low, Earnings High, Revenue Average, Revenue Low, Revenue High] Recommendations Firm To Grade From Grade Action Date 2012-03-14 15:28:00 Oxen Group Hold init 2012-03-28 06:29:00 Citigroup Buy main 2012-04-03 08:45:00 Global Equities Research Overweight main 2012-04-05 06:34:00 Deutsche Bank Buy main 2012-04-09 06:03:00 Pivotal Research Buy main 2012-04-10 11:32:00 UBS Buy main 2012-04-13 06:16:00 Deutsche Bank Buy main 2012-04-13 06:18:00 Jefferies Buy main 2012-04-13 06:37:00 PiperJaffray Overweight main 2012-04-13 06:38:00 Goldman Sachs Neutral main 2012-04-13 06:41:00 JP Morgan Overweight main 2012-04-13 06:51:00 Oppenheimer Outperform main 2012-04-13 07:13:00 Benchmark Hold main 2012-04-13 08:46:00 BMO Capital Outperform main 2012-04-16 06:52:00 Hilliard Lyons Buy main 2012-06-06 06:17:00 Deutsche Bank Buy main 2012-06-06 06:56:00 JP Morgan Overweight main 2012-06-22 06:15:00 Citigroup Buy main 2012-07-13 05:57:00 Wedbush Neutral init 2012-07-17 09:33:00 Outperform main 2012-07-20 06:43:00 Benchmark Hold main 2012-07-20 06:54:00 Deutsche Bank Buy main 2012-07-20 06:59:00 Bank of America Buy main 2012-08-13 05:49:00 Morgan Stanley Overweight Equal-Weight up 2012-09-17 06:07:00 Global Equities Research Overweight main 2012-09-21 06:28:00 Cantor Fitzgerald Buy init 2012-09-24 06:11:00 Citigroup Buy main 2012-09-24 09:05:00 Pivotal Research Buy main 2012-09-25 07:20:00 Capstone Buy main 2012-09-26 05:48:00 Canaccord Genuity Buy main ... ... ... ... ... 2017-10-27 19:29:31 UBS Buy main 2018-02-02 14:04:52 PiperJaffray Overweight Overweight main 2018-04-24 11:43:49 JP Morgan Overweight Overweight main 2018-04-24 12:24:37 Deutsche Bank Buy Buy main 2018-05-05 14:00:37 B. Riley FBR Buy main 2018-07-13 13:49:13 Cowen & Co. Outperform Outperform main 2018-07-24 11:50:55 Cowen & Co. Outperform Outperform main 2018-07-24 13:33:47 Raymond James Outperform Outperform main 2018-10-23 11:18:00 Deutsche Bank Buy Buy main 2018-10-26 15:17:08 Raymond James Outperform Outperform main 2019-01-23 12:55:04 Deutsche Bank Buy Buy main 2019-02-05 12:55:12 Deutsche Bank Buy Buy main 2019-02-05 13:18:47 PiperJaffray Overweight Overweight main 2019-05-15 12:34:54 Deutsche Bank Buy main 2019-10-23 12:58:59 Credit Suisse Outperform main 2019-10-29 11:58:09 Raymond James Outperform main 2019-10-29 14:15:40 Deutsche Bank Buy main 2019-10-29 15:48:29 UBS Buy main 2020-01-06 11:22:07 Pivotal Research Buy Hold up 2020-01-17 13:01:48 UBS Buy main 2020-02-04 12:26:56 Piper Sandler Overweight main 2020-02-04 12:41:00 Raymond James Outperform main 2020-02-04 14:00:36 Deutsche Bank Buy main 2020-02-06 11:34:20 CFRA Strong Buy main 2020-03-18 13:52:51 JP Morgan Overweight main 2020-03-30 13:26:16 UBS Buy main 2020-04-17 13:01:41 Oppenheimer Outperform main 2020-04-20 19:29:50 Credit Suisse Outperform main 2020-04-29 14:01:51 UBS Buy main 2020-05-05 12:44:16 Deutsche Bank Buy main [219 rows x 4 columns] Earnings Empty DataFrame Columns: [Open, High, Low, Close, Adj Close, Volume] Index: [] Quarterly Earnings Empty DataFrame Columns: [Open, High, Low, Close,


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号