John Snow Labs' NLU is a Python library for applying state-of-the-art text mining, directly on any dataframe, with a single line of code. As a facade of the award-winning Spark NLP library, it comes with 1000+ of pretrained models in 100+, all production-grade, scalable, and trainable, with everything in 1 line of code.
See how easy it is to use any of the thousands of models in 1 line of code, there are hundreds of tutorials and simple examples you can copy and paste into your projects to achieve State Of The Art easily. <img src="http://ckl-it.de/wp-content/uploads/2020/08/My-Video6.gif" width="1800" height="500"/>
This 1 line let's you visualize and play with 1000+ SOTA NLU & NLP models in 200 languages
<img src="https://raw.githubusercontent.com/JohnSnowLabs/nlu/master/docs/assets/streamlit_docs_assets/gif/start.gif">streamlit run https://raw.githubusercontent.com/JohnSnowLabs/nlu/master/examples/streamlit/01_dashboard.py
NLU provides tight and simple integration into Streamlit, which enables building powerful webapps in just 1 line of code which showcase the. View the NLU&Streamlit documentation or NLU & Streamlit examples section. The entire GIF demo and
Take a look at our official NLU page: https://nlu.johnsnowlabs.com/ for user documentation and examples
| Ressource | Description |
|---|---|
| Install NLU | Just run pip install nlu pyspark==3.0.2 |
| The NLU Namespace | Find all the names of models you can load with nlu.load() |
The nlu.load(<Model>) function | Load any of the 1000+ models in 1 line |
The nlu.load(<Model>).predict(data) function | Predict on Strings, List of Strings, Numpy Arrays, Pandas, Modin and Spark Dataframes |
The nlu.load(<train.Model>).fit(data) function | Train a text classifier for 2-Class, N-Classes Multi-N-Classes, Named-Entitiy-Recognition or Parts of Speech Tagging |
The nlu.load(<Model>).viz(data) function | Visualize the results of Word Embedding Similarity Matrix, Named Entity Recognizers, Dependency Trees & Parts of Speech, Entity Resolution,Entity Linking or Entity Status Assertion |
The nlu.load(<Model>).viz_streamlit(data) function | Display an interactive GUI which lets you explore and test every model and feature in NLU in 1 click. |
| General Concepts | General concepts in NLU |
| The latest release notes | Newest features added to NLU |
| Overview NLU 1-liners examples | Most common used models and their results |
| Overview NLU 1-liners examples for healthcare models | Most common used healthcare models and their results |
| Overview of all NLU tutorials and Examples | 100+ tutorials on how to use NLU on text datasets for various problems and from various sources like Twitter, Chinese News, Crypto News Headlines, Airline Traffic communication, Product review classifier training, |
| Connect with us on Slack | Problems, questions or suggestions? We have a very active and helpful community of over 2000+ AI enthusiasts putting NLU, Spark NLP & Spark OCR to good use |
| Discussion Forum | More indepth discussion with the community? Post a thread in our discussion Forum |
| John Snow Labs Medium | Articles and Tutorials on the NLU, Spark NLP and Spark OCR |
| John Snow Labs Youtube | Videos and Tutorials on the NLU, Spark NLP and Spark OCR |
| NLU Website | The official NLU website |
| Github Issues | Report a bug |
To get your hands on the power of NLU, you just need to install it via pip and ensure Java 8 is installed and properly configured. Checkout Quickstart for more infos
pip install nlu pyspark==3.0.2
import nlu nlu.load('sentiment').predict('I love NLU! <3')
Get 6 different embeddings in 1 line and use them for downstream data science tasks!
nlu.load('bert elmo albert xlnet glove use').predict('I love NLU! <3')
NLU provides everything a data scientist might want to wish for in one line of code!
Choose the right tool for the right task! Whether you analyze movies or twitter, NLU has the right model for you!
Working with text data can sometimes be quite a dirty job. NLU helps you keep your hands clean by providing components that take away from data engineering intensive tasks.
For NLU models to load, see the NLU Namespace or the John Snow Labs Modelshub or go straight to the source.
In the following tabular, all available tutorials using NLU are listed. These tutorials will help you learn the usage of the NLU library and on how to use it for your own tasks. Some of the tasks NLU does are translating from any language to the english language, lemmatizing, tokenizing, cleaning text from Symbol or unwanted syntax, spellchecking, detecting entities, analyzing sentiments and many more!
{:.table2}
| Tutorial Description | NLU Spells Used | Open In Colab | Dataset and Paper References |
|---|---|---|---|
| Albert Word Embeddings with NLU | albert, sentiment pos albert emotion | Albert-Paper, Albert on Github, Albert on TensorFlow, T-SNE, T-SNE-Albert, Albert_Embedding | |
| Bert Word Embeddings with NLU | bert, pos sentiment emotion bert | Bert-Paper, Bert Github, T-SNE, T-SNE-Bert, Bert_Embedding | |
| BIOBERT Word Embeddings with NLU | biobert , sentiment pos biobert emotion | BioBert-Paper, Bert Github , BERT: Deep Bidirectional Transformers, Bert Github, T-SNE, T-SNE-Biobert, Biobert_Embedding | |
| COVIDBERT Word Embeddings with NLU | covidbert, sentiment covidbert pos | CovidBert-Paper, Bert Github, T-SNE, T-SNE-CovidBert, Covidbert_Embedding | |
| ELECTRA Word Embeddings with NLU | electra, sentiment pos en.embed.electra emotion | Electra-Paper, T-SNE, T-SNE-Electra, Electra_Embedding | |
| ELMO Word Embeddings with NLU | elmo, sentiment pos elmo emotion | ELMO-Paper, Elmo-TensorFlow, T-SNE, T-SNE-Elmo, Elmo-Embedding | |
| GLOVE Word Embeddings with NLU | glove, sentiment pos glove emotion | Glove-Paper, T-SNE, T-SNE-Glove , Glove_Embedding | |
| XLNET Word Embeddings with NLU | xlnet, sentiment pos xlnet emotion | [

AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号