John Snow Labs' NLU is a Python library for applying state-of-the-art text mining, directly on any dataframe, with a single line of code. As a facade of the award-winning Spark NLP library, it comes with 1000+ of pretrained models in 100+, all production-grade, scalable, and trainable, with everything in 1 line of code.
See how easy it is to use any of the thousands of models in 1 line of code, there are hundreds of tutorials and simple examples you can copy and paste into your projects to achieve State Of The Art easily. <img src="http://ckl-it.de/wp-content/uploads/2020/08/My-Video6.gif" width="1800" height="500"/>
This 1 line let's you visualize and play with 1000+ SOTA NLU & NLP models in 200 languages
<img src="https://raw.githubusercontent.com/JohnSnowLabs/nlu/master/docs/assets/streamlit_docs_assets/gif/start.gif">streamlit run https://raw.githubusercontent.com/JohnSnowLabs/nlu/master/examples/streamlit/01_dashboard.py
NLU provides tight and simple integration into Streamlit, which enables building powerful webapps in just 1 line of code which showcase the. View the NLU&Streamlit documentation or NLU & Streamlit examples section. The entire GIF demo and
Take a look at our official NLU page: https://nlu.johnsnowlabs.com/ for user documentation and examples
Ressource | Description |
---|---|
Install NLU | Just run pip install nlu pyspark==3.0.2 |
The NLU Namespace | Find all the names of models you can load with nlu.load() |
The nlu.load(<Model>) function | Load any of the 1000+ models in 1 line |
The nlu.load(<Model>).predict(data) function | Predict on Strings , List of Strings , Numpy Arrays , Pandas , Modin and Spark Dataframes |
The nlu.load(<train.Model>).fit(data) function | Train a text classifier for 2-Class , N-Classes Multi-N-Classes , Named-Entitiy-Recognition or Parts of Speech Tagging |
The nlu.load(<Model>).viz(data) function | Visualize the results of Word Embedding Similarity Matrix , Named Entity Recognizers , Dependency Trees & Parts of Speech , Entity Resolution ,Entity Linking or Entity Status Assertion |
The nlu.load(<Model>).viz_streamlit(data) function | Display an interactive GUI which lets you explore and test every model and feature in NLU in 1 click. |
General Concepts | General concepts in NLU |
The latest release notes | Newest features added to NLU |
Overview NLU 1-liners examples | Most common used models and their results |
Overview NLU 1-liners examples for healthcare models | Most common used healthcare models and their results |
Overview of all NLU tutorials and Examples | 100+ tutorials on how to use NLU on text datasets for various problems and from various sources like Twitter, Chinese News, Crypto News Headlines, Airline Traffic communication, Product review classifier training, |
Connect with us on Slack | Problems, questions or suggestions? We have a very active and helpful community of over 2000+ AI enthusiasts putting NLU, Spark NLP & Spark OCR to good use |
Discussion Forum | More indepth discussion with the community? Post a thread in our discussion Forum |
John Snow Labs Medium | Articles and Tutorials on the NLU, Spark NLP and Spark OCR |
John Snow Labs Youtube | Videos and Tutorials on the NLU, Spark NLP and Spark OCR |
NLU Website | The official NLU website |
Github Issues | Report a bug |
To get your hands on the power of NLU, you just need to install it via pip and ensure Java 8 is installed and properly configured. Checkout Quickstart for more infos
pip install nlu pyspark==3.0.2
import nlu nlu.load('sentiment').predict('I love NLU! <3')
Get 6 different embeddings in 1 line and use them for downstream data science tasks!
nlu.load('bert elmo albert xlnet glove use').predict('I love NLU! <3')
NLU provides everything a data scientist might want to wish for in one line of code!
Choose the right tool for the right task! Whether you analyze movies or twitter, NLU has the right model for you!
Working with text data can sometimes be quite a dirty job. NLU helps you keep your hands clean by providing components that take away from data engineering intensive tasks.
For NLU models to load, see the NLU Namespace or the John Snow Labs Modelshub or go straight to the source.
In the following tabular, all available tutorials using NLU are listed. These tutorials will help you learn the usage of the NLU library and on how to use it for your own tasks. Some of the tasks NLU does are translating from any language to the english language, lemmatizing, tokenizing, cleaning text from Symbol or unwanted syntax, spellchecking, detecting entities, analyzing sentiments and many more!
{:.table2}
Tutorial Description | NLU Spells Used | Open In Colab | Dataset and Paper References |
---|---|---|---|
Albert Word Embeddings with NLU | albert , sentiment pos albert emotion | Albert-Paper, Albert on Github, Albert on TensorFlow, T-SNE, T-SNE-Albert, Albert_Embedding | |
Bert Word Embeddings with NLU | bert , pos sentiment emotion bert | Bert-Paper, Bert Github, T-SNE, T-SNE-Bert, Bert_Embedding | |
BIOBERT Word Embeddings with NLU | biobert , sentiment pos biobert emotion | BioBert-Paper, Bert Github , BERT: Deep Bidirectional Transformers, Bert Github, T-SNE, T-SNE-Biobert, Biobert_Embedding | |
COVIDBERT Word Embeddings with NLU | covidbert , sentiment covidbert pos | CovidBert-Paper, Bert Github, T-SNE, T-SNE-CovidBert, Covidbert_Embedding | |
ELECTRA Word Embeddings with NLU | electra , sentiment pos en.embed.electra emotion | Electra-Paper, T-SNE, T-SNE-Electra, Electra_Embedding | |
ELMO Word Embeddings with NLU | elmo , sentiment pos elmo emotion | ELMO-Paper, Elmo-TensorFlow, T-SNE, T-SNE-Elmo, Elmo-Embedding | |
GLOVE Word Embeddings with NLU | glove , sentiment pos glove emotion | Glove-Paper, T-SNE, T-SNE-Glove , Glove_Embedding | |
XLNET Word Embeddings with NLU | xlnet , sentiment pos xlnet emotion | [![Open In |
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷 使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号