T-Rex

T-Rex

融合文本和视觉提示的通用目标检测模型

T-Rex2是一款融合文本和视觉提示的通用目标检测模型。它突破传统模型局限,具备零样本检测能力,适用于农业、工业和生物医学等领域。该模型支持交互式视觉提示、通用视觉提示和文本提示三种工作流程,满足多样化的目标检测需求。项目提供在线演示和API接口,便于快速体验和集成。

T-Rex2目标检测计算机视觉视觉提示APIGithub开源项目
<div align=center> <img src="https://yellow-cdn.veclightyear.com/835a84d5/b0570e82-8fba-41da-9c50-70f34fa5a818.jpg" width=900 > </div> <div align=center> <p>一图胜千言,同样,为图片添加的文字也意味深长。</p> </div> <div align=center>

Static Badge arXiv preprint Homepage Hits Static Badge

</div>

📌 如果您觉得我们的项目有帮助,需要更多的API令牌配额,您可以通过填写此表格申请额外的令牌。我们的团队将审核您的请求,并在一两天内为您分配更多令牌。您也可以通过发送电子邮件给我们申请更多令牌。


介绍视频 🎥

如果可能的话,请打开音乐 🎧

视频名称

新闻 📰

  • 2024-06-24: 我们基于T-Rex2推出了两款新的免费产品:
    • Count Anything APP:CountAnything是一款多功能、高效且经济实惠的计数工具,它利用先进的计算机视觉算法,特别是T-Rex,进行自动计数。适用于制造业、农业和水产养殖业等多个行业。

视频名称

  • T-Rex Label:T-Rex Label是一款由T-Rex2驱动的高级标注工具,专门设计用于处理各种行业和场景的复杂性。它是那些旨在简化工作流程并轻松创建高质量数据集的人的理想选择。

视频名称

  • 2024-05-17: Grounding DINO 1.5已发布。这是IDEA Research最强大的开放世界目标检测模型系列。它可以通过文本提示检测任何对象!

目录 📜

1. 简介 📚

目标检测,即在图像中定位和识别物体的能力,是计算机视觉的基石,对从自动驾驶到内容审核的应用至关重要。传统目标检测模型的一个显著局限性是它们的封闭集性质。这些模型是在预定义的类别集上训练的,限制了它们只能识别这些特定类别。训练过程本身也很艰巨,需要专业知识、大量数据集和复杂的模型调整才能达到理想的准确度。此外,引入新的对象类别会加剧这些挑战,需要重复整个过程。

T-Rex2通过在一个模型中整合文本和视觉提示来解决这些限制,从而利用两种模态的优势。文本和视觉提示的协同效应使T-Rex2具备强大的零样本能力,使其成为不断变化的目标检测领域中的多功能工具。

<div align=center> <img src="https://yellow-cdn.veclightyear.com/835a84d5/813ec769-7175-445d-9239-cb6c17947c33.jpg" width=600 > </div>

T-Rex能做什么 📝

T-Rex2适用于各种现实世界的应用,包括但不限于:农业、工业、畜牧业和野生动物监测、生物学、医学、OCR、零售、电子、交通、物流等。T-Rex2主要支持三种主要工作流程,包括交互式视觉提示工作流程、通用视觉提示工作流程和文本提示工作流程。它可以覆盖大多数需要目标检测的应用场景。

视频名称

2. 试用演示 🎮

我们现在开放了T-Rex2的在线演示。在这里查看我们的演示

<div align=center> <img src="https://yellow-cdn.veclightyear.com/835a84d5/d39ef63d-0a0b-4f9d-92b1-24b4bb31c686.jpg"> </div>

3. API 使用示例📚

我们现在开放了 T-Rex2 的免费 API 访问。对于教育工作者、学生和研究人员,我们提供了一个可以长时间使用的 API,以支持您的教育和研究工作。您可以在这里申请 API

设置

安装 API 包并从邮件中获取 API 令牌。

git clone https://github.com/IDEA-Research/T-Rex.git cd T-Rex pip install dds-cloudapi-sdk==0.1.1 pip install -v -e .

交互式视觉提示 API

  • 在交互式视觉提示工作流程中,用户可以在给定图像上以框或点的形式提供视觉提示,以指定要检测的对象。

    python demo_examples/interactive_inference.py --token <your_token>
    • 您应该会在 demo_vis/ 中看到以下可视化结果 <div align=center> <img src="https://yellow-cdn.veclightyear.com/835a84d5/955232ad-e2d1-45de-b81e-205e70553e87.jpg" width=400 > <img src="https://yellow-cdn.veclightyear.com/835a84d5/03ced93c-589b-46ad-9f7e-0fe8ff70963e.jpg" height=285 > </div>

通用视觉提示 API

  • 在通用视觉提示工作流程中,用户可以在一张参考图像上提供视觉提示,并在另一张图像上进行检测。

    python demo_examples/generic_inference.py --token <your_token>
    • 您应该会在 demo_vis/ 中看到以下可视化结果 <div align=center> <img src="https://yellow-cdn.veclightyear.com/835a84d5/c401e803-21cf-4991-9156-c3b2e4349d9d.jpg" width=280 > + <img src="https://yellow-cdn.veclightyear.com/835a84d5/932abf04-a9e6-46c3-90ae-67991ea1ebe1.jpg" width=280 > = <img src="https://yellow-cdn.veclightyear.com/835a84d5/e887565d-3dd4-4c2d-bf08-6eb0d7d9c81e.jpg" width=280 > </div>

自定义视觉提示嵌入 API

在这个工作流程中,您可以使用多张图像为一个对象类别自定义视觉嵌入。有了这个嵌入,您可以在任何图像上进行检测。

python demo_examples/customize_embedding.py --token <your_token>
  • 您应该会得到一个 safetensors 格式的视觉提示嵌入下载链接。保存它,然后我们用它来进行 embedding_inference

嵌入推理 API

使用从上一个 API 生成的视觉提示嵌入,您可以在任何图像上进行检测。

python demo_examples/embedding_inference.py --token <your_token>

4. 使用 API 的本地 Gradio 演示🎨

<div align=center> <img src="https://yellow-cdn.veclightyear.com/835a84d5/29443f20-b139-46d3-b10b-8e07f60703e1.jpg" width=500> </div>

4.1. 设置

  • 如果您还没有安装 T-Rex2 API,请先安装
# 安装 gradio 和其他依赖 pip install gradio==4.22.0 pip install gradio-image-prompter

4.2. 运行 Gradio 演示

python gradio_demo.py --trex2_api_token <your_token>

4.3. 基本操作

  • 绘制框:在图像上绘制一个框来指定要检测的对象。拖动鼠标左键来绘制框。
  • 绘制点:在图像上绘制一个点来指定要检测的对象。单击鼠标左键来绘制点。
  • 交互式视觉提示:在给定图像上以框或点的形式提供视觉提示,以指定要检测的对象。输入目标图像和交互式视觉提示图像应该相同。
  • 通用视觉提示:在多个参考图像上提供视觉提示,并在另一张图像上进行检测。

5. 相关工作

:fire: 我们发布了 DINOv训练和推理代码演示链接,它可以处理开放集和指代检测与分割的上下文视觉提示。快来看看吧!

BibTeX 📚

@misc{jiang2024trex2,
      title={T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy}, 
      author={Qing Jiang and Feng Li and Zhaoyang Zeng and Tianhe Ren and Shilong Liu and Lei Zhang},
      year={2024},
      eprint={2403.14610},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多