| Documentation | Build Status | Help |
|---|---|---|
| [![][docs-dev-img]][docs-dev-url] [![][docs-stable-img]][docs-stable-url] | [![][gha-img]][gha-url] [![][codecov-img]][codecov-url] | [![][slack-img]][slack-url] [![][gitter-img]][gitter-url] |
AutoMLPipeline (AMLP) is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and makes it easy to discover optimal structures for machine learning regression and classification.
To illustrate, here is a pipeline expression
and evaluation of a typical machine learning
workflow that extracts numerical features (numf)
for ica (Independent Component Analysis)
and pca (Principal Component Analysis)
transformations, respectively, concatenated with
the hot-bit encoding (ohe) of categorical
features (catf) of a given data for rf (Random Forest) modeling:
model = (catf |> ohe) + (numf |> pca) + (numf |> ica) |> rf fit!(model,Xtrain,Ytrain) prediction = transform!(model,Xtest) score(:accuracy,prediction,Ytest) crossvalidate(model,X,Y,"balanced_accuracy_score")
Just take note that + has higher priority than |> so if you
are not sure, enclose the operations inside parentheses.
### these two expressions are the same a |> b + c; a |> (b + c) ### these two expressions are the same a + b |> c; (a + b) |> c
More examples can be found in the examples folder including optimizing pipelines by multi-threading or distributed computing.
The typical workflow in machine learning classification or prediction requires some or combination of the following preprocessing steps together with modeling:
Each step has several choices of functions to use together with their corresponding parameters. Optimizing the performance of the entire pipeline is a combinatorial search of the proper order and combination of preprocessing steps, optimization of their corresponding parameters, together with searching for the optimal model and its hyper-parameters.
Because of close dependencies among various steps, we can consider the entire process to be a pipeline optimization problem (POP). POP requires simultaneous optimization of pipeline structure and parameter adaptation of its elements. As a consequence, having an elegant way to express pipeline structure can help lessen the complexity in the management and analysis of the wide-array of choices of optimization routines.
The target of future work will be the implementations of different pipeline optimization algorithms ranging from evolutionary approaches, integer programming (discrete choices of POP elements), tree/graph search, and hyper-parameter search.
AutoMLPipeline is in the Julia Official package registry.
The latest release can be installed at the Julia
prompt using Julia's package management which is triggered
by pressing ] at the julia prompt:
julia> ] pkg> update pkg> add AutoMLPipeline
Below outlines some typical way to preprocess and model any dataset.
# Make sure that the input feature is a dataframe and the target output is a 1-D vector. using AutoMLPipeline profbdata = getprofb() X = profbdata[:,2:end] Y = profbdata[:,1] |> Vector; head(x)=first(x,5) head(profbdata)
5×7 DataFrame. Omitted printing of 1 columns │ Row │ Home.Away │ Favorite_Points │ Underdog_Points │ Pointspread │ Favorite_Name │ Underdog_name │ │ │ String │ Int64 │ Int64 │ Float64 │ String │ String │ ├─────┼───────────┼─────────────────┼─────────────────┼─────────────┼───────────────┼───────────────┤ │ 1 │ away │ 27 │ 24 │ 4.0 │ BUF │ MIA │ │ 2 │ at_home │ 17 │ 14 │ 3.0 │ CHI │ CIN │ │ 3 │ away │ 51 │ 0 │ 2.5 │ CLE │ PIT │ │ 4 │ at_home │ 28 │ 0 │ 5.5 │ NO │ DAL │ │ 5 │ at_home │ 38 │ 7 │ 5.5 │ MIN │ HOU │
using AutoMLPipeline #### Decomposition pca = skoperator("PCA") fa = skoperator("FactorAnalysis") ica = skoperator("FastICA") #### Scaler rb = skoperator("RobustScaler") pt = skoperator("PowerTransformer") norm = skoperator("Normalizer") mx = skoperator("MinMaxScaler") std = skoperator("StandardScaler") #### categorical preprocessing ohe = OneHotEncoder() #### Column selector catf = CatFeatureSelector() numf = NumFeatureSelector() disc = CatNumDiscriminator() #### Learners rf = skoperator("RandomForestClassifier") gb = skoperator("GradientBoostingClassifier") lsvc = skoperator("LinearSVC") svc = skoperator("SVC") mlp = skoperator("MLPClassifier") ada = skoperator("AdaBoostClassifier") sgd = skoperator("SGDClassifier") skrf_reg = skoperator("RandomForestRegressor") skgb_reg = skoperator("GradientBoostingRegressor") jrf = RandomForest() tree = PrunedTree() vote = VoteEnsemble() stack = StackEnsemble() best = BestLearner()
Note: You can get a listing of available Preprocessors and Learners by invoking the function:
skoperator()pohe = catf |> ohe tr = fit_transform!(pohe,X,Y) head(tr)
5×56 DataFrame. Omitted printing of 47 columns │ Row │ x1 │ x2 │ x3 │ x4 │ x5 │ x6 │ x7 │ x8 │ x9 │ │ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ ├─────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤ │ 1 │ 1.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ │ 2 │ 0.0 │ 1.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ │ 3 │ 0.0 │ 0.0 │ 1.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ │ 4 │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ │ 5 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ 0.0 │ 0.0 │ 0.0 │ 0.0 │
pdec = (numf |> pca) + (numf |> ica) tr = fit_transform!(pdec,X,Y) head(tr)
5×8 DataFrame │ Row │ x1 │ x2 │ x3 │ x4 │ x1_1 │ x2_1 │ x3_1 │ x4_1 │ │ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ ├─────┼──────────┼──────────┼──────────┼──────────┼────────────┼────────────┼────────────┼────────────┤ │ 1 │ 2.47477 │ 7.87074 │ -1.10495 │ 0.902431 │ 0.0168432 │ 0.00319873 │ -0.0467633 │ 0.026742 │ │ 2 │ -5.47113 │ -3.82946 │ -2.08342 │ 1.00524 │ -0.0327947 │ -0.0217808 │ -0.0451314 │ 0.00702006 │ │ 3 │ 30.4068 │ -10.8073 │ -6.12339 │ 0.883938 │ -0.0734292 │ 0.115776 │ -0.0425357 │ 0.0497831 │ │ 4 │ 8.18372 │ -15.507 │ -1.43203 │ 1.08255 │ -0.0656664 │ 0.0368666 │ -0.0457154 │ -0.0192752 │ │ 5 │ 16.6176 │ -6.68636 │ -1.66597 │ 0.978243 │ -0.0338749 │ 0.0643065 │ -0.0461703 │ 0.00671696 │
ppt = (numf |> rb |> ica) + (numf |> pt |> pca) tr = fit_transform!(ppt,X,Y) head(tr)
5×8 DataFrame │ Row │ x1 │ x2 │ x3 │ x4 │ x1_1 │ x2_1 │ x3_1 │ x4_1 │ │ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ ├─────┼─────────────┼─────────────┼────────────┼───────────┼───────────┼──────────┼────────────┼───────────┤ │ 1 │ -0.00308891 │ -0.0269009 │ -0.0166298 │ 0.0467559 │ -0.64552 │ 1.40289 │ -0.0284468 │ 0.111773 │ │ 2 │ 0.0217799 │ -0.00699717 │ 0.0329868 │ 0.0449952 │ -0.832404 │ 0.475629 │ -1.14881 │ -0.01702 │ │ 3 │ -0.115577 │ -0.0503802 │ 0.0736173 │ 0.0420466 │ 1.54491 │ 1.65258 │ -1.35967 │ -2.57866 │ │ 4 │ -0.0370057 │ 0.0190459 │ 0.065814 │ 0.0454864 │ 1.32065 │ 0.563565 │ -2.05839 │ -0.74898 │ │ 5 │ -0.0643088 │ -0.00711682 │ 0.0340452 │ 0.0459816 │ 1.1223 │ 1.45555 │ -0.88864 │ -0.776195 │
# take all categorical columns and hot-bit encode each, # concatenate them to the numerical features, # and feed them to the voting ensemble using AutoMLPipeline.Utils pvote = (catf |> ohe) + (numf) |> vote pred = fit_transform!(pvote,X,Y) sc=score(:accuracy,pred,Y) println(sc) crossvalidate(pvote,X,Y,"accuracy_score")
fold: 1, 0.5373134328358209 fold: 2, 0.7014925373134329 fold: 3, 0.5294117647058824 fold: 4, 0.6716417910447762 fold: 5, 0.6716417910447762 fold: 6, 0.6119402985074627 fold: 7, 0.5074626865671642 fold: 8, 0.6323529411764706 fold: 9, 0.6268656716417911 fold: 10, 0.5671641791044776 errors: 0 (mean = 0.6057287093942055, std = 0.06724940684190235, folds = 10, errors = 0)
Note: crossvalidate() supports the following sklearn's performance metric
accuracy_score, balanced_accuracy_score, cohen_kappa_scorejaccard_score, matthews_corrcoef, hamming_loss, zero_one_lossf1_score, precision_score,

职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试 衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号