AutoMLPipeline.jl

AutoMLPipeline.jl

Julia机器学习管道构建和优化工具

AutoMLPipeline工具包用简洁表达式构建复杂机器学习管道。它基于Julia宏编程实现符号化处理,便于优化回归和分类模型结构。主要特点包括符号化API、常用库封装、可扩展架构、元集成学习和特征选择。该工具简化了从数据预处理到模型训练的流程,支持多种算法组件。

AutoMLPipeline机器学习管道优化特征工程集成学习Github开源项目

AutoMLPipeline

<div align="center">

Visitor

OpenSSF Best Practices

Overall Stats


DocumentationBuild StatusHelp
[![][docs-dev-img]][docs-dev-url] [![][docs-stable-img]][docs-stable-url][![][gha-img]][gha-url] [![][codecov-img]][codecov-url][![][slack-img]][slack-url] [![][gitter-img]][gitter-url]
</div>

Star History

Star History Chart


AutoMLPipeline (AMLP) is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and makes it easy to discover optimal structures for machine learning regression and classification.

To illustrate, here is a pipeline expression and evaluation of a typical machine learning workflow that extracts numerical features (numf) for ica (Independent Component Analysis) and pca (Principal Component Analysis) transformations, respectively, concatenated with the hot-bit encoding (ohe) of categorical features (catf) of a given data for rf (Random Forest) modeling:

model = (catf |> ohe) + (numf |> pca) + (numf |> ica) |> rf fit!(model,Xtrain,Ytrain) prediction = transform!(model,Xtest) score(:accuracy,prediction,Ytest) crossvalidate(model,X,Y,"balanced_accuracy_score")

Just take note that + has higher priority than |> so if you are not sure, enclose the operations inside parentheses.

### these two expressions are the same a |> b + c; a |> (b + c) ### these two expressions are the same a + b |> c; (a + b) |> c

Please read this AutoMLPipeline Paper for benchmark comparisons.

Recorded Video/Conference Presentations:

Related Video/Conference Presentations:

More examples can be found in the examples folder including optimizing pipelines by multi-threading or distributed computing.

Motivations

The typical workflow in machine learning classification or prediction requires some or combination of the following preprocessing steps together with modeling:

  • feature extraction (e.g. ica, pca, svd)
  • feature transformation (e.g. normalization, scaling, ohe)
  • feature selection (anova, correlation)
  • modeling (rf, adaboost, xgboost, lm, svm, mlp)

Each step has several choices of functions to use together with their corresponding parameters. Optimizing the performance of the entire pipeline is a combinatorial search of the proper order and combination of preprocessing steps, optimization of their corresponding parameters, together with searching for the optimal model and its hyper-parameters.

Because of close dependencies among various steps, we can consider the entire process to be a pipeline optimization problem (POP). POP requires simultaneous optimization of pipeline structure and parameter adaptation of its elements. As a consequence, having an elegant way to express pipeline structure can help lessen the complexity in the management and analysis of the wide-array of choices of optimization routines.

The target of future work will be the implementations of different pipeline optimization algorithms ranging from evolutionary approaches, integer programming (discrete choices of POP elements), tree/graph search, and hyper-parameter search.

Package Features

  • Symbolic pipeline API for easy expression and high-level description of complex pipeline structures and processing workflow
  • Common API wrappers for ML libs including Scikitlearn, DecisionTree, etc
  • Easily extensible architecture by overloading just two main interfaces: fit! and transform!
  • Meta-ensembles that allow composition of ensembles of ensembles (recursively if needed) for robust prediction routines
  • Categorical and numerical feature selectors for specialized preprocessing routines based on types

Installation

AutoMLPipeline is in the Julia Official package registry. The latest release can be installed at the Julia prompt using Julia's package management which is triggered by pressing ] at the julia prompt:

julia> ] pkg> update pkg> add AutoMLPipeline

Sample Usage

Below outlines some typical way to preprocess and model any dataset.

1. Load Data, Extract Input (X) and Target (Y)
# Make sure that the input feature is a dataframe and the target output is a 1-D vector. using AutoMLPipeline profbdata = getprofb() X = profbdata[:,2:end] Y = profbdata[:,1] |> Vector; head(x)=first(x,5) head(profbdata)
5×7 DataFrame. Omitted printing of 1 columns │ Row │ Home.Away │ Favorite_Points │ Underdog_Points │ Pointspread │ Favorite_Name │ Underdog_name │ │ │ String │ Int64 │ Int64 │ Float64 │ String │ String │ ├─────┼───────────┼─────────────────┼─────────────────┼─────────────┼───────────────┼───────────────┤ 1 │ away │ 27244.0 │ BUF │ MIA │ 2 │ at_home │ 17143.0 │ CHI │ CIN │ 3 │ away │ 5102.5 │ CLE │ PIT │ 4 │ at_home │ 2805.5 │ NO │ DAL │ 5 │ at_home │ 3875.5 │ MIN │ HOU │

2. Load Filters, Transformers, and Learners

using AutoMLPipeline #### Decomposition pca = skoperator("PCA") fa = skoperator("FactorAnalysis") ica = skoperator("FastICA") #### Scaler rb = skoperator("RobustScaler") pt = skoperator("PowerTransformer") norm = skoperator("Normalizer") mx = skoperator("MinMaxScaler") std = skoperator("StandardScaler") #### categorical preprocessing ohe = OneHotEncoder() #### Column selector catf = CatFeatureSelector() numf = NumFeatureSelector() disc = CatNumDiscriminator() #### Learners rf = skoperator("RandomForestClassifier") gb = skoperator("GradientBoostingClassifier") lsvc = skoperator("LinearSVC") svc = skoperator("SVC") mlp = skoperator("MLPClassifier") ada = skoperator("AdaBoostClassifier") sgd = skoperator("SGDClassifier") skrf_reg = skoperator("RandomForestRegressor") skgb_reg = skoperator("GradientBoostingRegressor") jrf = RandomForest() tree = PrunedTree() vote = VoteEnsemble() stack = StackEnsemble() best = BestLearner()

Note: You can get a listing of available Preprocessors and Learners by invoking the function:

  • skoperator()

3. Filter categories and hot-encode them

pohe = catf |> ohe tr = fit_transform!(pohe,X,Y) head(tr)
5×56 DataFrame. Omitted printing of 47 columns │ Row │ x1 │ x2 │ x3 │ x4 │ x5 │ x6 │ x7 │ x8 │ x9 │ │ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ ├─────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤ 11.00.00.00.00.00.00.00.00.020.01.00.00.00.00.00.00.00.030.00.01.00.00.00.00.00.00.040.00.00.01.00.00.00.00.00.050.00.00.00.01.00.00.00.00.0

4. Numerical Feature Extraction Example

4.1 Filter numeric features, compute ica and pca features, and combine both features
pdec = (numf |> pca) + (numf |> ica) tr = fit_transform!(pdec,X,Y) head(tr)
5×8 DataFrame │ Row │ x1 │ x2 │ x3 │ x4 │ x1_1 │ x2_1 │ x3_1 │ x4_1 │ │ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ ├─────┼──────────┼──────────┼──────────┼──────────┼────────────┼────────────┼────────────┼────────────┤ 12.474777.87074-1.104950.9024310.01684320.00319873-0.04676330.0267422-5.47113-3.82946-2.083421.00524-0.0327947-0.0217808-0.04513140.00702006330.4068-10.8073-6.123390.883938-0.07342920.115776-0.04253570.049783148.18372-15.507-1.432031.08255-0.06566640.0368666-0.0457154-0.0192752516.6176-6.68636-1.665970.978243-0.03387490.0643065-0.04617030.00671696
4.2 Filter numeric features, transform to robust and power transform scaling, perform ica and pca, respectively, and combine both
ppt = (numf |> rb |> ica) + (numf |> pt |> pca) tr = fit_transform!(ppt,X,Y) head(tr)
5×8 DataFrame │ Row │ x1 │ x2 │ x3 │ x4 │ x1_1 │ x2_1 │ x3_1 │ x4_1 │ │ │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ ├─────┼─────────────┼─────────────┼────────────┼───────────┼───────────┼──────────┼────────────┼───────────┤ 1-0.00308891-0.0269009-0.01662980.0467559-0.645521.40289-0.02844680.11177320.0217799-0.006997170.03298680.0449952-0.8324040.475629-1.14881-0.017023-0.115577-0.05038020.07361730.04204661.544911.65258-1.35967-2.578664-0.03700570.01904590.0658140.04548641.320650.563565-2.05839-0.748985-0.0643088-0.007116820.03404520.04598161.12231.45555-0.88864-0.776195

5. A Pipeline for the Voting Ensemble Classification

# take all categorical columns and hot-bit encode each, # concatenate them to the numerical features, # and feed them to the voting ensemble using AutoMLPipeline.Utils pvote = (catf |> ohe) + (numf) |> vote pred = fit_transform!(pvote,X,Y) sc=score(:accuracy,pred,Y) println(sc) crossvalidate(pvote,X,Y,"accuracy_score")
fold: 1, 0.5373134328358209 fold: 2, 0.7014925373134329 fold: 3, 0.5294117647058824 fold: 4, 0.6716417910447762 fold: 5, 0.6716417910447762 fold: 6, 0.6119402985074627 fold: 7, 0.5074626865671642 fold: 8, 0.6323529411764706 fold: 9, 0.6268656716417911 fold: 10, 0.5671641791044776 errors: 0 (mean = 0.6057287093942055, std = 0.06724940684190235, folds = 10, errors = 0)

Note: crossvalidate() supports the following sklearn's performance metric

classification:

  • accuracy_score, balanced_accuracy_score, cohen_kappa_score
  • jaccard_score, matthews_corrcoef, hamming_loss, zero_one_loss
  • f1_score, precision_score,

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多