
参数化测试库,自动生成高效测 试用例
Hypothesis是一个测试库系列,能自动生成简单易懂的测试用例,提高参数化测试效率。它简化测试编写过程,自动化繁琐部分,提升测试质量,使开发者能专注于高层次测试逻辑。虽主要用于Python,Hypothesis的核心概念适用于多种编程语言,目前已有Ruby和Java的初步实现。
Hypothesis is a family of testing libraries which let you write tests parametrized by a source of examples. A Hypothesis implementation then generates simple and comprehensible examples that make your tests fail. This simplifies writing your tests and makes them more powerful at the same time, by letting software automate the boring bits and do them to a higher standard than a human would, freeing you to focus on the higher level test logic.
This sort of testing is often called "property-based testing",
and the most widely known implementation of the concept is the Haskell
library QuickCheck <https://hackage.haskell.org/package/QuickCheck>_,
but Hypothesis differs significantly from QuickCheck and is designed to fit
idiomatically and easily into existing styles of testing that you are used to,
with absolutely no familiarity with Haskell or functional programming needed.
Hypothesis for Python <hypothesis-python>_ is the original implementation,
and the only one that is currently fully production ready and actively maintained.
The core ideas of Hypothesis are language agnostic and in principle it is suitable for any language. We are interested in developing and supporting implementations for a wide variety of languages, but currently lack the resources to do so, so our porting efforts are mostly prototypes.
The two prototype implementations of Hypothesis for other languages are:
Hypothesis for Ruby <hypothesis-ruby>_
is a reasonable start on a port of Hypothesis to Ruby.Hypothesis for Java <https://github.com/HypothesisWorks/hypothesis-java>_
is a prototype written some time ago. It's far from feature complete and is
not under active development, but was intended to prove the viability of the
concept.Additionally there is a port of the core engine of Hypothesis, Conjecture, to Rust. It is not feature complete but in the long run we are hoping to move much of the existing functionality to Rust and rebuild Hypothesis for Python on top of it, greatly lowering the porting effort to other languages.
Any or all of these could be turned into full fledged implementations with relatively little effort (no more than a few months of full time work), but as well as the initial work this would require someone prepared to provide or fund ongoing maintenance efforts for them in order to be viable.


职场AI,就用扣子
AI 办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感 知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作 辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号