Gen-L-Video

Gen-L-Video

无需额外训练实现多文本条件长视频生成和编辑

Gen-L-Video是一种扩展短视频扩散模型的视频生成方法,能实现多文本条件下的长视频生成和编辑。该方法无需额外训练即可处理数百帧的视频,并保持内容一致性。Gen-L-Video支持多语义段视频生成、平滑语义变化和视频内容编辑等功能,为长视频处理提供了一种通用解决方案。

Gen-L-Video长视频生成多文本条件视频编辑无需预训练Github开源项目

Gen-L-Video: Long Video Generation via Temporal Co-Denoising

This repository is the official implementation of Gen-L-Video.

Project Website arXiv Open In Colab

You might be interested in Gen-L^2, which works better.

Introduction

TL;DR: A <font color=#FF2000> universal</font> methodology that extends short video diffusion models for efficient <font color=#FF2000>multi-text conditioned long video</font> generation and editing.

Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency.

<p align="center"> <img src="./statics/imgs/lvdm.png" width="1080px"/> <br> <em>Essentially, this procedure establishes an abstract long video generator and editor without necessitating any additional training, enabling the generation and editing of videos of any length using established short video generation and editing methodologies.</em> </p>

Setup

Clone the Repo

git clone https://github.com/G-U-N/Gen-L-Video cd Gen-L-Video # The repo might be too large to clone because many long gifs are over 100 M. Fork the repo, delete the statics, and then clone it.

Install Environment via Anaconda

conda env create -f requirements.yml conda activate glv conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

Install Xformers

# (Optional) Makes the build much faster pip install ninja # Set TORCH_CUDA_ARCH_LIST if running and building on different GPU types pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers # (this can take dozens of minutes)

Install SAM and Grounding DINO

pip install git+https://github.com/facebookresearch/segment-anything.git pip install git+https://github.com/IDEA-Research/GroundingDINO.git

or

git clone https://github.com/facebookresearch/segment-anything.git cd segment-anything pip install -e . cd .. # If you have a CUDA environment, please make sure the environment variable CUDA_HOME is set. # If the cuda version of the system conflicts with the cudatoolkit version, See: https://github.com/G-U-N/Gen-L-Video/discussions/7 git clone https://github.com/IDEA-Research/GroundingDINO.git cd GroundingDINO pip install -e .

Note that if you are using GPU clusters that the management node has no access to GPU resources, you should submit the pip install -e . to the computing node as a computing task when building the GroundingDINO. Otherwise, it will not support detection computing through GPU.

Download Pretrained Weights

Make sure git-lfs is available. See: https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md

bash scripts/download_pretrained_models.sh

After downloading them, you should specify the absolute/relative path of them in the config files.

If you download all the above pretrained weights in the folder weights , set the configs files as follows:

  1. In configs/tuning-free-inpaint/girl-glass.yaml
sam_checkpoint: "weights/sam_vit_h_4b8939.pth" groundingdino_checkpoint: "weights/groundingdino_swinb_cogcoor.pth" controlnet_path: "weights/edit-anything-v0-3"
  1. In one-shot-tuning.py, set
adapter_paths={ "pose":"weights/T2I-Adapter/models/t2iadapter_openpose_sd14v1.pth", "sketch":"weights/T2I-Adapter/models/t2iadapter_sketch_sd14v1.pth", "seg": "weights/T2I-Adapter/models/t2iadapter_seg_sd14v1.pth", "depth":"weights/T2I-Adapter/models/t2iadapter_depth_sd14v1.pth", "canny":"weights/T2I-Adapter/models/t2iadapter_canny_sd14v1.pth" }
  1. In configs/one-shot-tuning/hike.yaml, set
pretrained_model_path: "weights/anything-v4.0"

Then all the other weights are able to be automatically downloaded through the API of Hugging Face.

For users who are unable to download weights automatically

Here is an additional instruction for installing and running grounding dino.

# Notice: If you use 'pip install git+https://github.com/IDEA-Research/GroundingDINO.git' # You should modify GroundingDINO_SwinB_cfg.py in python site-packages directory # e.g. ~/miniconda3/envs/glv/lib/python3.8/site-packages/groundingdino/config/GroundingDINO_SwinB_cfg.py cd GroundingDINO/groundingdino/config/ vim GroundingDINO_SwinB_cfg.py

set

text_encoder_type = "[Your Path]/bert-base-uncased"

Then

vim GroundingDINO/groundingdino/util/get_tokenlizer.py

Set

def get_pretrained_language_model(text_encoder_type): if text_encoder_type == "bert-base-uncased" or text_encoder_type.split("/")[-1]=="bert-base-uncased": return BertModel.from_pretrained(text_encoder_type) if text_encoder_type == "roberta-base": return RobertaModel.from_pretrained(text_encoder_type) raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))

Now you should be able to run your Grounding DINO with pre-downloaded bert weights.

Get your own control videos

git clone https://github.com/lllyasviel/ControlNet.git cd ControlNet git checkout f4748e3 mv ../process_data.py . python process_data.py --v_path=../data --t_path=../t_data --c_path=../c_data --fps=10

Inference

  1. One-Shot Tuning Method
accelerate launch one-shot-tuning.py --control=[your control]

[your control] can be set as pose , depth, seg, sketch, canny.

pose and depth are recommended.

  1. Tuning-Free Method for videos with smooth semantic changes.
accelerate launch tuning-free-mix.py
  1. Tuning-Free Edit Anything in Videos.
accelerate launch tuning-free-inpaint.py
  1. Long video generation with pretrained.
accelerate launch follow-your-pose-long.py
  1. Tuning-Free Long Video2Video generation
# canny accelerate launch tuning-free-control.py --config=./configs/tuning-free-control/girl-glass.yaml # hed accelerate launch tuning-free-control.py --config=./configs/tuning-free-control/girl.yaml

Comparisons

<table class="center"> <tr> <td>Method</td> <td>Long Video</td> <td>Multi-Text Conditioned</td> <td>Pretraining-Free</td> <td>Parallel Denoising</td> <td>Versatile</td> </tr> <tr> <td>Tune-A-Video</td> <td>❌</td> <td>❌</td> <td>✔</td> <td>❌</td> <td>❌</td> </tr> <tr> <td>LVDM</td> <td>✔</td> <td>❌</td> <td>❌</td> <td>❌</td> <td>❌</td> </tr> <tr> <td>NUWA-XL</td> <td>✔</td> <td>✔</td> <td>❌</td> <td>✔</td> <td>❌</td> </tr> <tr> <td>Gen-L-Video</td> <td>✔</td> <td>✔</td> <td>✔</td> <td>✔</td> <td>✔</td> </tr> </table>

Results

Most of the results can be generated with a single RTX 3090.

Multi-Text Conditioned Long Video Generation

https://github.com/G-U-N/Gen-L-Video/assets/60997859/9b370894-708a-4ed2-a2ac-abfa93829ea6

This video containing clips bearing various semantic information.

<img src="./statics/imgs/example.png" width=800px>

Long Video with Smooth Semantic Changes

All the following videos are directly generated with the pretrained Stable Diffusion weight without additional training.

<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Videos with Smooth Semantic Changes</b></td> </tr> <tr> <td><img src="./statics/gifs/boat-walk-mix.gif"></td> <td><img src="./statics/gifs/car-turn-beach-mix.gif"></td> <td><img src="./statics/gifs/lion-cat-mix.gif"></td> <td><img src="./statics/gifs/surf-skiing-mix.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">"A man is boating, village." → "A man is walking by, city, sunset."</td> <td width=25% style="text-align:center;">"A jeep car is running on the beach, sunny.” → "a jeep car is running on the beach, night."</td> <td width=25% style="text-align:center;">"Lion, Grass, Rainy." → "Cat, Grass, Sun." </td> <td width=25% style="text-align:center;">"A man is skiing in the sea." → "A man is surfing in the snow."</td> </tr> </table>

Edit Anything in Video

All the following videos are directly generated with the pretrained Stable Diffusion weight without additional training.

<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Edit Anything in Videos</b></td> </tr> <tr> <td><img src="./statics/gifs/girl-glass-source.gif"></td> <td><img src="./statics/gifs/girl-glass-mask.gif"></td> <td><img src="./statics/gifs/girl-glass-pink.gif"></td> <td><img src="./statics/gifs/girl-glass-cyberpunk.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">Source Video</td> <td width=25% style="text-align:center;">Mask of Sunglasses</td> <td width=25% style="text-align:center;">"Sunglasses" → "Pink Sunglasses" </td> <td width=25% style="text-align:center;">"Sunglasses" → "Cyberpunk Sunglasses with Neon Lights"</td> </tr> <tr> <td><img src="./statics/gifs/man-surfing-source.gif"></td> <td><img src="./statics/gifs/man-surfing-mask.gif"></td> <td><img src="./statics/gifs/man-surfing-batman.gif"></td> <td><img src="./statics/gifs/man-surfing-ironman.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">Source Video</td> <td width=25% style="text-align:center;">Mask of Man</td> <td width=25% style="text-align:center;">"Man" → "Bat Man" </td> <td width=25% style="text-align:center;">"Man" → "Iron Man"</td> </tr> </table>

Controllable Video

<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Controllable Video</b></td> </tr> <tr> <td><img src="./statics/gifs/tennis-pose.gif"></td> <td><img src="./statics/gifs/iron-man-tennis.gif"></td> <td><img src="./statics/gifs/vangogh-tennis.gif"></td> <td><img src="./statics/gifs/fire-tennis.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">Pose Control</td> <td width=25% style="text-align:center;">"Iron Man is fighting in the snow."</td> <td width=25% style="text-align:center;">"A Van Gogh style painting of a man dancing."</td> <td width=25% style="text-align:center;">"A man is running in the fire."</td> </tr> <tr> <td><img src="./statics/gifs/cat-in-the-sun-depth.gif"></td> <td><img src="./statics/gifs/dog-in-the-sun.gif"></td> <td><img src="./statics/gifs/tiger-in-the-sun.gif"></td> <td><img src="./statics/gifs/girl-in-the-sun.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">Depth Control</td> <td width=25% style="text-align:center;">"Dog in the sun.""</td> <td width=25% style="text-align:center;">"Tiger in the sun."</td> <td width=25% style="text-align:center;">"Girl in the sun."</td> </tr> </table>

Tuning-Free Long Video-to-Video Generation

<table class="center"> <tr> <td style="text-align:center;" colspan="2"><b>Tuning-Free Long Video-to-Video Generation</b></td> </tr> <tr> <td><img src="./statics/gifs/girl.gif"></td> <td><img src="./statics/gifs/girl-glass.gif"></td> </tr> <tr> <td width=50% style="text-align:center;"> "Girls."</td> <td width=50% style="text-align:center;"> "Girls wearing sunglasses."</td> </tr> </table>

Long Video Generation with Pretrained Short Text-to-Video Diffusion Model

All the following videos are directly generated with the pre-trained VideoCrafter without additional training.

<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Long Video Generation with Pretrained Short Text-to-Video Diffusion Model</b></td> </tr> <tr> <td><img src="./statics/gifs/ride-horse-iso-1.gif"></td> <td><img src="./statics/gifs/ride-horse-2.gif"></td> <td><img src="./statics/gifs/ride-horse-iso-2.gif"></td> <td><img src="./statics/gifs/ride-horse-4.gif"></td> </tr> <tr> <td width=25% style="text-align:center;"> "Astronaut riding a horse." (Isolated)</td> <td width=25% style="text-align:center;">"Astronaut riding a horse." (Gen-L-Video)</td> <td width=25% style="text-align:center;">"Astronaut riding a horse, Loving Vincent Style." (Isolated)</td> <td width=25% style="text-align:center;">"Astronaut riding a horse, Loving Vincent Style." (Gen-L-Video)</td> </tr> <tr> <td><img src="./statics/gifs/monkey-drinking-iso.gif"></td> <td><img src="./statics/gifs/monkey-drinking.gif"></td> <td><img src="./statics/gifs/car-moving-iso.gif"></td> <td><img src="./statics/gifs/car-moving.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">"A monkey is drinking water." (Isolated)</td> <td width=25% style="text-align:center;">"A monkey

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多