This repository is the official implementation of Gen-L-Video.
You might be interested in Gen-L^2, which works better.
TL;DR: A <font color=#FF2000> universal</font> methodology that extends short video diffusion models for efficient <font color=#FF2000>multi-text conditioned long video</font> generation and editing.
Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency.
<p align="center"> <img src="./statics/imgs/lvdm.png" width="1080px"/> <br> <em>Essentially, this procedure establishes an abstract long video generator and editor without necessitating any additional training, enabling the generation and editing of videos of any length using established short video generation and editing methodologies.</em> </p>git clone https://github.com/G-U-N/Gen-L-Video cd Gen-L-Video # The repo might be too large to clone because many long gifs are over 100 M. Fork the repo, delete the statics, and then clone it.
conda env create -f requirements.yml conda activate glv conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
# (Optional) Makes the build much faster pip install ninja # Set TORCH_CUDA_ARCH_LIST if running and building on different GPU types pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers # (this can take dozens of minutes)
pip install git+https://github.com/facebookresearch/segment-anything.git pip install git+https://github.com/IDEA-Research/GroundingDINO.git
or
git clone https://github.com/facebookresearch/segment-anything.git cd segment-anything pip install -e . cd .. # If you have a CUDA environment, please make sure the environment variable CUDA_HOME is set. # If the cuda version of the system conflicts with the cudatoolkit version, See: https://github.com/G-U-N/Gen-L-Video/discussions/7 git clone https://github.com/IDEA-Research/GroundingDINO.git cd GroundingDINO pip install -e .
Note that if you are using GPU clusters that the management node has no access to GPU resources, you should submit the pip install -e . to the computing node as a computing task when building the GroundingDINO. Otherwise, it will not support detection computing through GPU.
Make sure git-lfs is available. See: https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md
bash scripts/download_pretrained_models.sh
After downloading them, you should specify the absolute/relative path of them in the config files.
If you download all the above pretrained weights in the folder weights , set the configs files as follows:
configs/tuning-free-inpaint/girl-glass.yamlsam_checkpoint: "weights/sam_vit_h_4b8939.pth" groundingdino_checkpoint: "weights/groundingdino_swinb_cogcoor.pth" controlnet_path: "weights/edit-anything-v0-3"
one-shot-tuning.py, setadapter_paths={ "pose":"weights/T2I-Adapter/models/t2iadapter_openpose_sd14v1.pth", "sketch":"weights/T2I-Adapter/models/t2iadapter_sketch_sd14v1.pth", "seg": "weights/T2I-Adapter/models/t2iadapter_seg_sd14v1.pth", "depth":"weights/T2I-Adapter/models/t2iadapter_depth_sd14v1.pth", "canny":"weights/T2I-Adapter/models/t2iadapter_canny_sd14v1.pth" }
configs/one-shot-tuning/hike.yaml, setpretrained_model_path: "weights/anything-v4.0"
Then all the other weights are able to be automatically downloaded through the API of Hugging Face.
Here is an additional instruction for installing and running grounding dino.
# Notice: If you use 'pip install git+https://github.com/IDEA-Research/GroundingDINO.git' # You should modify GroundingDINO_SwinB_cfg.py in python site-packages directory # e.g. ~/miniconda3/envs/glv/lib/python3.8/site-packages/groundingdino/config/GroundingDINO_SwinB_cfg.py cd GroundingDINO/groundingdino/config/ vim GroundingDINO_SwinB_cfg.py
set
text_encoder_type = "[Your Path]/bert-base-uncased"
Then
vim GroundingDINO/groundingdino/util/get_tokenlizer.py
Set
def get_pretrained_language_model(text_encoder_type): if text_encoder_type == "bert-base-uncased" or text_encoder_type.split("/")[-1]=="bert-base-uncased": return BertModel.from_pretrained(text_encoder_type) if text_encoder_type == "roberta-base": return RobertaModel.from_pretrained(text_encoder_type) raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
Now you should be able to run your Grounding DINO with pre-downloaded bert weights.
git clone https://github.com/lllyasviel/ControlNet.git cd ControlNet git checkout f4748e3 mv ../process_data.py . python process_data.py --v_path=../data --t_path=../t_data --c_path=../c_data --fps=10
accelerate launch one-shot-tuning.py --control=[your control]
[your control] can be set as pose , depth, seg, sketch, canny.
pose and depth are recommended.
accelerate launch tuning-free-mix.py
accelerate launch tuning-free-inpaint.py
accelerate launch follow-your-pose-long.py
# canny accelerate launch tuning-free-control.py --config=./configs/tuning-free-control/girl-glass.yaml # hed accelerate launch tuning-free-control.py --config=./configs/tuning-free-control/girl.yaml
Most of the results can be generated with a single RTX 3090.
https://github.com/G-U-N/Gen-L-Video/assets/60997859/9b370894-708a-4ed2-a2ac-abfa93829ea6
This video containing clips bearing various semantic information.
<img src="./statics/imgs/example.png" width=800px>All the following videos are directly generated with the pretrained Stable Diffusion weight without additional training.
<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Videos with Smooth Semantic Changes</b></td> </tr> <tr> <td><img src="./statics/gifs/boat-walk-mix.gif"></td> <td><img src="./statics/gifs/car-turn-beach-mix.gif"></td> <td><img src="./statics/gifs/lion-cat-mix.gif"></td> <td><img src="./statics/gifs/surf-skiing-mix.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">"A man is boating, village." → "A man is walking by, city, sunset."</td> <td width=25% style="text-align:center;">"A jeep car is running on the beach, sunny.” → "a jeep car is running on the beach, night."</td> <td width=25% style="text-align:center;">"Lion, Grass, Rainy." → "Cat, Grass, Sun." </td> <td width=25% style="text-align:center;">"A man is skiing in the sea." → "A man is surfing in the snow."</td> </tr> </table>All the following videos are directly generated with the pretrained Stable Diffusion weight without additional training.
<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Edit Anything in Videos</b></td> </tr> <tr> <td><img src="./statics/gifs/girl-glass-source.gif"></td> <td><img src="./statics/gifs/girl-glass-mask.gif"></td> <td><img src="./statics/gifs/girl-glass-pink.gif"></td> <td><img src="./statics/gifs/girl-glass-cyberpunk.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">Source Video</td> <td width=25% style="text-align:center;">Mask of Sunglasses</td> <td width=25% style="text-align:center;">"Sunglasses" → "Pink Sunglasses" </td> <td width=25% style="text-align:center;">"Sunglasses" → "Cyberpunk Sunglasses with Neon Lights"</td> </tr> <tr> <td><img src="./statics/gifs/man-surfing-source.gif"></td> <td><img src="./statics/gifs/man-surfing-mask.gif"></td> <td><img src="./statics/gifs/man-surfing-batman.gif"></td> <td><img src="./statics/gifs/man-surfing-ironman.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">Source Video</td> <td width=25% style="text-align:center;">Mask of Man</td> <td width=25% style="text-align:center;">"Man" → "Bat Man" </td> <td width=25% style="text-align:center;">"Man" → "Iron Man"</td> </tr> </table>All the following videos are directly generated with the pre-trained VideoCrafter without additional training.
<table class="center"> <tr> <td style="text-align:center;" colspan="4"><b>Long Video Generation with Pretrained Short Text-to-Video Diffusion Model</b></td> </tr> <tr> <td><img src="./statics/gifs/ride-horse-iso-1.gif"></td> <td><img src="./statics/gifs/ride-horse-2.gif"></td> <td><img src="./statics/gifs/ride-horse-iso-2.gif"></td> <td><img src="./statics/gifs/ride-horse-4.gif"></td> </tr> <tr> <td width=25% style="text-align:center;"> "Astronaut riding a horse." (Isolated)</td> <td width=25% style="text-align:center;">"Astronaut riding a horse." (Gen-L-Video)</td> <td width=25% style="text-align:center;">"Astronaut riding a horse, Loving Vincent Style." (Isolated)</td> <td width=25% style="text-align:center;">"Astronaut riding a horse, Loving Vincent Style." (Gen-L-Video)</td> </tr> <tr> <td><img src="./statics/gifs/monkey-drinking-iso.gif"></td> <td><img src="./statics/gifs/monkey-drinking.gif"></td> <td><img src="./statics/gifs/car-moving-iso.gif"></td> <td><img src="./statics/gifs/car-moving.gif"></td> </tr> <tr> <td width=25% style="text-align:center;">"A monkey is drinking water." (Isolated)</td> <td width=25% style="text-align:center;">"A monkey

稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个 多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动 化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!