在pytorch中计算CNN感受野大小。支持2D CNN和3D CNN。
<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/10e3a4fe-8fba-4b17-9faf-f28dcb1eaae6.gif" width="299" height="224" /># pip install git+https://github.com/Fangyh09/pytorch-receptive-field.git from torch_receptive_field import receptive_field from torch_receptive_field import receptive_field_visualization_2d receptive_field_dict = receptive_field(model, (3, 256, 256)) image_path = "./examples/example.jpg" output_path_without_extension = "./examples/example_receptive_field_2d" receptive_field_visualization_2d(receptive_field_dict, image_path, output_path_without_extension)
pip install git+https://github.com/Fangyh09/pytorch-receptive-field.git
from torch_receptive_field import receptive_field receptive_field(model, input_size=(channels, H, W))
或者
from torch_receptive_field import receptive_field dict = receptive_field(model, input_size=(channels, H, W)) receptive_field_for_unit(receptive_field_dict, "2", (2,2))
import torch import torch.nn as nn import torch.nn.functional as F from torch_receptive_field import receptive_field class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): y = self.conv(x) y = self.bn(y) y = self.relu(y) y = self.maxpool(y) y = self.avgpool(y) return y device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0 model = Net().to(device) receptive_field_dict = receptive_field(model, (3, 256, 256)) receptive_field_for_unit(receptive_field_dict, "2", (1,1))
------------------------------------------------------------------------------
层 (类型) 特征图大小 起始点 步长 感受野
==============================================================================
0 [256, 256] 0.5 1.0 1.0
1 [128, 128] 0.5 2.0 7.0
2 [128, 128] 0.5 2.0 7.0
3 [128, 128] 0.5 2.0 7.0
4 [64, 64] 0.5 4.0 11.0
5 [32, 32] 0.5 8.0 19.0
==============================================================================
第2层,单元位置(1, 1)的感受野大小为
[(0, 6.0), (0, 6.0)]
起始点是特征图网格中第一个项的中心。
步长是特征图网格中相邻项之间的距离。
感受野是特征图网格中项的视野大小。
import torch import torch.nn as nn import torch.nn.functional as F from torch_receptive_field import receptive_field class Net3D(nn.Module): def __init__(self): super(Net3D, self).__init__() self.conv = nn.Conv3d(3, 6, kernel_size=3, stride=1, padding=1, bias=False) self.bn = nn.BatchNorm3d(6) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=2, stride=2, padding=1) def forward(self, x): y = self.conv(x) y = self.bn(y) y = self.relu(y) y = self.maxpool(y) return y device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0 model = Net().to(device) receptive_field_dict = receptive_field(model, (3, 16, 16, 16)) receptive_field_for_unit(receptive_field_dict, "2", (1,1,1))
------------------------------------------------------------------------------
层 (类型) 特征图大小 起始点 步长 感受野
==============================================================================
0 [16, 16, 16] 0.5 1.0 1.0
1 [16, 16, 16] 0.5 1.0 3.0
2 [16, 16, 16] 0.5 1.0 3.0
3 [16, 16, 16] 0.5 1.0 3.0
4 [9, 9, 9] 0.0 2.0 4.0
==============================================================================
第2层,单元位置(1, 1, 1)的感受野大小为
[(0, 3.0), (0, 3.0), (0, 3.0)]
感谢 @pytorch-summary


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应, 生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号