在pytorch中计算CNN感受野大小。支持2D CNN和3D CNN。
<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/10e3a4fe-8fba-4b17-9faf-f28dcb1eaae6.gif" width="299" height="224" /># pip install git+https://github.com/Fangyh09/pytorch-receptive-field.git from torch_receptive_field import receptive_field from torch_receptive_field import receptive_field_visualization_2d receptive_field_dict = receptive_field(model, (3, 256, 256)) image_path = "./examples/example.jpg" output_path_without_extension = "./examples/example_receptive_field_2d" receptive_field_visualization_2d(receptive_field_dict, image_path, output_path_without_extension)
pip install git+https://github.com/Fangyh09/pytorch-receptive-field.git
from torch_receptive_field import receptive_field receptive_field(model, input_size=(channels, H, W))
或者
from torch_receptive_field import receptive_field dict = receptive_field(model, input_size=(channels, H, W)) receptive_field_for_unit(receptive_field_dict, "2", (2,2))
import torch import torch.nn as nn import torch.nn.functional as F from torch_receptive_field import receptive_field class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): y = self.conv(x) y = self.bn(y) y = self.relu(y) y = self.maxpool(y) y = self.avgpool(y) return y device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0 model = Net().to(device) receptive_field_dict = receptive_field(model, (3, 256, 256)) receptive_field_for_unit(receptive_field_dict, "2", (1,1))
------------------------------------------------------------------------------
层 (类型) 特征图大小 起始点 步长 感受野
==============================================================================
0 [256, 256] 0.5 1.0 1.0
1 [128, 128] 0.5 2.0 7.0
2 [128, 128] 0.5 2.0 7.0
3 [128, 128] 0.5 2.0 7.0
4 [64, 64] 0.5 4.0 11.0
5 [32, 32] 0.5 8.0 19.0
==============================================================================
第2层,单元位置(1, 1)的感受野大小为
[(0, 6.0), (0, 6.0)]
起始点是特征图网格中第一个项的中心。
步长是特征图网格中相邻项之间的距离。
感受野是特征图网格中项的视野大小。
import torch import torch.nn as nn import torch.nn.functional as F from torch_receptive_field import receptive_field class Net3D(nn.Module): def __init__(self): super(Net3D, self).__init__() self.conv = nn.Conv3d(3, 6, kernel_size=3, stride=1, padding=1, bias=False) self.bn = nn.BatchNorm3d(6) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=2, stride=2, padding=1) def forward(self, x): y = self.conv(x) y = self.bn(y) y = self.relu(y) y = self.maxpool(y) return y device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0 model = Net().to(device) receptive_field_dict = receptive_field(model, (3, 16, 16, 16)) receptive_field_for_unit(receptive_field_dict, "2", (1,1,1))
------------------------------------------------------------------------------
层 (类型) 特征图大小 起始点 步长 感受野
==============================================================================
0 [16, 16, 16] 0.5 1.0 1.0
1 [16, 16, 16] 0.5 1.0 3.0
2 [16, 16, 16] 0.5 1.0 3.0
3 [16, 16, 16] 0.5 1.0 3.0
4 [9, 9, 9] 0.0 2.0 4.0
==============================================================================
第2层,单元位置(1, 1, 1)的感受野大小为
[(0, 3.0), (0, 3.0), (0, 3.0)]
感谢 @pytorch-summary


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律 知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让 你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知 和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号