pytorch-receptive-field

pytorch-receptive-field

PyTorch CNN感受野计算与可视化工具

pytorch-receptive-field是一个专门用于计算和可视化卷积神经网络(CNN)感受野的开源工具。该工具支持2D和3D CNN,能生成直观的感受野2D动画图。它易于集成到PyTorch项目中,可计算整个网络或特定层的感受野大小。这对于分析和优化CNN架构提供了重要参考。

pytorch-receptive-fieldCNN感受野可视化神经网络Github开源项目

pytorch-receptive-field

在pytorch中计算CNN感受野大小。支持2D CNN和3D CNN。

创建2D可视化gif

# pip install git+https://github.com/Fangyh09/pytorch-receptive-field.git from torch_receptive_field import receptive_field from torch_receptive_field import receptive_field_visualization_2d receptive_field_dict = receptive_field(model, (3, 256, 256)) image_path = "./examples/example.jpg" output_path_without_extension = "./examples/example_receptive_field_2d" receptive_field_visualization_2d(receptive_field_dict, image_path, output_path_without_extension)
<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/10e3a4fe-8fba-4b17-9faf-f28dcb1eaae6.gif" width="299" height="224" />

使用方法

pip install git+https://github.com/Fangyh09/pytorch-receptive-field.git

from torch_receptive_field import receptive_field receptive_field(model, input_size=(channels, H, W))

或者

from torch_receptive_field import receptive_field dict = receptive_field(model, input_size=(channels, H, W)) receptive_field_for_unit(receptive_field_dict, "2", (2,2))

2D CNN示例

import torch import torch.nn as nn import torch.nn.functional as F from torch_receptive_field import receptive_field class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): y = self.conv(x) y = self.bn(y) y = self.relu(y) y = self.maxpool(y) y = self.avgpool(y) return y device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0 model = Net().to(device) receptive_field_dict = receptive_field(model, (3, 256, 256)) receptive_field_for_unit(receptive_field_dict, "2", (1,1))
------------------------------------------------------------------------------
        层 (类型)      特征图大小      起始点       步长      感受野 
==============================================================================
        0             [256, 256]        0.5        1.0             1.0 
        1             [128, 128]        0.5        2.0             7.0 
        2             [128, 128]        0.5        2.0             7.0 
        3             [128, 128]        0.5        2.0             7.0 
        4               [64, 64]        0.5        4.0            11.0 
        5               [32, 32]        0.5        8.0            19.0 
==============================================================================
第2层,单元位置(1, 1)的感受野大小为
 [(0, 6.0), (0, 6.0)]

更多说明

起始点是特征图网格中第一个项的中心。

步长是特征图网格中相邻项之间的距离。

感受野是特征图网格中项的视野大小。

3D CNN示例

import torch import torch.nn as nn import torch.nn.functional as F from torch_receptive_field import receptive_field class Net3D(nn.Module): def __init__(self): super(Net3D, self).__init__() self.conv = nn.Conv3d(3, 6, kernel_size=3, stride=1, padding=1, bias=False) self.bn = nn.BatchNorm3d(6) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=2, stride=2, padding=1) def forward(self, x): y = self.conv(x) y = self.bn(y) y = self.relu(y) y = self.maxpool(y) return y device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0 model = Net().to(device) receptive_field_dict = receptive_field(model, (3, 16, 16, 16)) receptive_field_for_unit(receptive_field_dict, "2", (1,1,1))
------------------------------------------------------------------------------
        层 (类型)      特征图大小      起始点       步长      感受野 
==============================================================================
        0             [16, 16, 16]        0.5        1.0             1.0 
        1             [16, 16, 16]        0.5        1.0             3.0 
        2             [16, 16, 16]        0.5        1.0             3.0 
        3             [16, 16, 16]        0.5        1.0             3.0 
        4              [9, 9, 9]          0.0        2.0             4.0 
==============================================================================
第2层,单元位置(1, 1, 1)的感受野大小为
 [(0, 3.0), (0, 3.0), (0, 3.0)]

相关

感谢 @pytorch-summary

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多