
AgileCoder is a novel multi-agent framework for software development that draws inspiration from the widely-used Agile Methodology in professional software engineering. The key innovation lies in its task-oriented approach, where instead of assigning fixed roles to agents, AgileCoder mimics real-world software development by creating a backlog of tasks and dividing the development process into sprints, with the backlog being dynamically updated at each sprint.
Website: https://fsoft-ai4code.github.io/agilecoder/
<div align="center"> <img alt="demo" src="assets/overview.jpg"/> </div>AgileCoder can be installed easily through pip:
pip install agilecoder
If you want to clone the repository, be sure to switch to the new-flow branch to access the latest source code.
AgileCoder currently supports various models, including OpenAI, Azure OpenAI, Anthropic, and your self-hosted models, which can be hosted by Ollama. For instance, to configure the necessary environment variables for the Azure OpenAI service, please set the following:
You can set these environment variables either in your system settings or by creating a .env file in the project root directory with the following format:
API_KEY=your_api_key RESOURCE_ENDPOINT=your_resource_endpoint API_TYPE=azure API_VERSION=your_api_version API_ENGINE=your_api_engine
For other models, please refer to setup_model.md
To generate software using AgileCoder, use the following command:
agilecoder --task "<your software requirements>"
Replace <your software requirements> with a description of the software you want AgileCoder to create.
For example, to generate a Caro game in Python, run:
agilecoder --task "Create a Caro game in Python"
AgileCoder will process your requirements and generate the corresponding software based on the provided task description.
You can specify additional options and flags to customize the behavior of AgileCoder. For more information on the available options, run:
agilecoder --help
This will display the help message with a list of supported options and their descriptions. Feel free to explore different software requirements and experiment with AgileCoder to generate various types of software projects tailored to your needs.

We will evaluate the performance of AgileCoder on two types of datasets to assess its effectiveness in generating code for different scenarios:
| Category | Model | HumanEval | MBPP |
|---|---|---|---|
| LLMs (prompting) | |||
| CodeGeeX-13B | 18.9 | 26.9 | |
| PaLM Coder-540B | 43.9 | 32.3 | |
| DeepSeeker-33B-Inst | 79.3 | 70.0 | |
| GPT-3.5 Turbo | 60.3 | 52.2 | |
| Claude 3 Haiku | 75.9 | 80.4 | |
| GPT 4 | 80.1 | 80.1 | |
| LLMs-based Agents | |||
| with GPT-3.5 Turbo | ChatDev | 61.79 | 74.80 |
| MetaGPT | 62.80 | 74.73 | |
| AgileCoder | 70.53 | 80.92 | |
| with Claude 3 Haiku | ChatDev | 76.83 | 70.96 |
| AgileCoder | 79.27 | 84.31 | |
| with GPT 4 | MetaGPT | 85.9 | 87.7 |
| AgileCoder | 90.85 | - |
For ProjectDev, we evaluate the practical application of software projects generated by AgileCoder, ChatDev, and MetaGPT. The evaluation will involve human assessment to compare their performance with 3 criterias:
| Metric | ChatDev | MetaGPT | AgileCoder |
|---|---|---|---|
| Executability | 32.79 | 7.73 | 57.79 |
| Entire Running Time (s) | 120 | 48 | 444 |
| Avg. Time/Sprint (s) | - | - | 306 |
| #Sprints | - | - | 1.64 |
| Token Usage | 7440 | 3029 | 36818 |
| Expenses (USD) | 0.12 | 0.02 | 0.44 |
| #Errors | 6 | 32 | 0 |
AgileCoder can generate a wide range of software with high accuracy; a gallery of executable software will be available soon.
<div align="center"> <img alt="demo" src="assets/demo_image.png"/> </div>More details can be found in screenshots
More details can be found in our paper.
If you're using AgileCoder in your research or applications, please cite using this BibTeX:
@article{nguyen2024agilecoder, title={AgileCoder: Dynamic Collaborative Agents for Software Development based on Agile Methodology}, author={Nguyen, Minh Huynh and Chau, Thang Phan and Nguyen, Phong X and Bui, Nghi DQ}, journal={arXiv preprint arXiv:2406.11912}, year={2024} }
If you have any questions, comments or suggestions, please do not hesitate to contact us.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供 开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号