pytorch-generative is a Python library which makes generative modeling in PyTorch easier by providing:
To get started, click on one of the links below.
To install pytorch-generative, clone the repository and install the requirements:
git clone https://www.github.com/EugenHotaj/pytorch-generative
cd pytorch-generative
pip install -r requirements.txt
After installation, run the tests to sanity check that everything works:
python -m unittest discover
All our models implement a reproduce function with all the hyperparameters necessary to reproduce the results listed in the supported algorithms section. This makes it very easy to reproduce any results using our training script, for example:
python train.py --model image_gpt --logdir /tmp/run --use-cuda
Training metrics will periodically be logged to TensorBoard for easy visualization. To view these metrics, launch a local TensorBoard server:
tensorboard --logdir /tmp/run
To run the model on a different dataset, with different hyperparameters, etc, simply modify its reproduce function and rerun the commands above.
To use pytorch-generative in Google Colab, clone the repository and move it into the top-level directory:
!git clone https://www.github.com/EugenHotaj/pytorch-generative
!mv pytorch-generative/pytorch_generative pytorch-generative
You can then import pytorch-generative like any other library:
import pytorch_generative as pg_nn from pytorch_generative import models ...
Supported models are implemented as PyTorch Modules and are easy to use:
from pytorch_generative import models ... # Data loading code. model = models.ImageGPT(in_channels=1, out_channels=1, in_size=28) model(batch)
Alternatively, lower level building blocks in pytorch_generative.nn can be used to write models from scratch. We show how to implement a convolutional ImageGPT model below:
from torch import nn from pytorch_generative import nn as pg_nn class TransformerBlock(nn.Module): """An ImageGPT Transformer block.""" def __init__(self, n_channels, n_attention_heads): """Initializes a new TransformerBlock instance. Args: n_channels: The number of input and output channels. n_attention_heads: The number of attention heads to use. """ super().__init__() self._ln1 = pg_nn.NCHWLayerNorm(n_channels) self._ln2 = pg_nn.NCHWLayerNorm(n_channels) self._attn = pg_nn.CausalAttention( in_channels=n_channels, embed_channels=n_channels, out_channels=n_channels, n_heads=n_attention_heads, mask_center=False) self._out = nn.Sequential( nn.Conv2d( in_channels=n_channels, out_channels=4*n_channels, kernel_size=1), nn.GELU(), nn.Conv2d( in_channels=4*n_channels, out_channels=n_channels, kernel_size=1)) def forward(self, x): x = x + self._attn(self._ln1(x)) return x + self._out(self._ln2(x)) class ImageGPT(nn.Module): """The ImageGPT Model.""" def __init__(self, in_channels, out_channels, in_size, n_transformer_blocks=8, n_attention_heads=4, n_embedding_channels=16): """Initializes a new ImageGPT instance. Args: in_channels: The number of input channels. out_channels: The number of output channels. in_size: Size of the input images. Used to create positional encodings. n_transformer_blocks: Number of TransformerBlocks to use. n_attention_heads: Number of attention heads to use. n_embedding_channels: Number of attention embedding channels to use. """ super().__init__() self._pos = nn.Parameter(torch.zeros(1, in_channels, in_size, in_size)) self._input = pg_nn.CausalConv2d( mask_center=True, in_channels=in_channels, out_channels=n_embedding_channels, kernel_size=3, padding=1) self._transformer = nn.Sequential( *[TransformerBlock(n_channels=n_embedding_channels, n_attention_heads=n_attention_heads) for _ in range(n_transformer_blocks)]) self._ln = pg_nn.NCHWLayerNorm(n_embedding_channels) self._out = nn.Conv2d(in_channels=n_embedding_channels, out_channels=out_channels, kernel_size=1) def forward(self, x): x = self._input(x + self._pos) x = self._transformer(x) x = self._ln(x) return self._out(x)
pytorch-generative supports the following algorithms.
We train likelihood based models on dynamically Binarized MNIST and report the log likelihood in the tables below.
| Algorithm | Binarized MNIST (nats) | Links |
|---|---|---|
| PixelSNAIL | 78.61 | Code, Paper |
| ImageGPT | 79.17 | Code, Paper |
| Gated PixelCNN | 81.50 | Code, Paper |
| PixelCNN | 81.45 | Code, Paper |
| MADE | 84.87 | Code, Paper |
| NADE | 85.65 | Code, Paper |
| FVSBN | 96.58 | Code, |


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。


全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号