pytorch-generative is a Python library which makes generative modeling in PyTorch easier by providing:
To get started, click on one of the links below.
To install pytorch-generative, clone the repository and install the requirements:
git clone https://www.github.com/EugenHotaj/pytorch-generative
cd pytorch-generative
pip install -r requirements.txt
After installation, run the tests to sanity check that everything works:
python -m unittest discover
All our models implement a reproduce function with all the hyperparameters necessary to reproduce the results listed in the supported algorithms section. This makes it very easy to reproduce any results using our training script, for example:
python train.py --model image_gpt --logdir /tmp/run --use-cuda
Training metrics will periodically be logged to TensorBoard for easy visualization. To view these metrics, launch a local TensorBoard server:
tensorboard --logdir /tmp/run
To run the model on a different dataset, with different hyperparameters, etc, simply modify its reproduce function and rerun the commands above.
To use pytorch-generative in Google Colab, clone the repository and move it into the top-level directory:
!git clone https://www.github.com/EugenHotaj/pytorch-generative
!mv pytorch-generative/pytorch_generative pytorch-generative
You can then import pytorch-generative like any other library:
import pytorch_generative as pg_nn from pytorch_generative import models ...
Supported models are implemented as PyTorch Modules and are easy to use:
from pytorch_generative import models ... # Data loading code. model = models.ImageGPT(in_channels=1, out_channels=1, in_size=28) model(batch)
Alternatively, lower level building blocks in pytorch_generative.nn can be used to write models from scratch. We show how to implement a convolutional ImageGPT model below:
from torch import nn from pytorch_generative import nn as pg_nn class TransformerBlock(nn.Module): """An ImageGPT Transformer block.""" def __init__(self, n_channels, n_attention_heads): """Initializes a new TransformerBlock instance. Args: n_channels: The number of input and output channels. n_attention_heads: The number of attention heads to use. """ super().__init__() self._ln1 = pg_nn.NCHWLayerNorm(n_channels) self._ln2 = pg_nn.NCHWLayerNorm(n_channels) self._attn = pg_nn.CausalAttention( in_channels=n_channels, embed_channels=n_channels, out_channels=n_channels, n_heads=n_attention_heads, mask_center=False) self._out = nn.Sequential( nn.Conv2d( in_channels=n_channels, out_channels=4*n_channels, kernel_size=1), nn.GELU(), nn.Conv2d( in_channels=4*n_channels, out_channels=n_channels, kernel_size=1)) def forward(self, x): x = x + self._attn(self._ln1(x)) return x + self._out(self._ln2(x)) class ImageGPT(nn.Module): """The ImageGPT Model.""" def __init__(self, in_channels, out_channels, in_size, n_transformer_blocks=8, n_attention_heads=4, n_embedding_channels=16): """Initializes a new ImageGPT instance. Args: in_channels: The number of input channels. out_channels: The number of output channels. in_size: Size of the input images. Used to create positional encodings. n_transformer_blocks: Number of TransformerBlocks to use. n_attention_heads: Number of attention heads to use. n_embedding_channels: Number of attention embedding channels to use. """ super().__init__() self._pos = nn.Parameter(torch.zeros(1, in_channels, in_size, in_size)) self._input = pg_nn.CausalConv2d( mask_center=True, in_channels=in_channels, out_channels=n_embedding_channels, kernel_size=3, padding=1) self._transformer = nn.Sequential( *[TransformerBlock(n_channels=n_embedding_channels, n_attention_heads=n_attention_heads) for _ in range(n_transformer_blocks)]) self._ln = pg_nn.NCHWLayerNorm(n_embedding_channels) self._out = nn.Conv2d(in_channels=n_embedding_channels, out_channels=out_channels, kernel_size=1) def forward(self, x): x = self._input(x + self._pos) x = self._transformer(x) x = self._ln(x) return self._out(x)
pytorch-generative supports the following algorithms.
We train likelihood based models on dynamically Binarized MNIST and report the log likelihood in the tables below.
| Algorithm | Binarized MNIST (nats) | Links |
|---|---|---|
| PixelSNAIL | 78.61 | Code, Paper |
| ImageGPT | 79.17 | Code, Paper |
| Gated PixelCNN | 81.50 | Code, Paper |
| PixelCNN | 81.45 | Code, Paper |
| MADE | 84.87 | Code, Paper |
| NADE | 85.65 | Code, Paper |
| FVSBN | 96.58 | Code, |


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式 导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作 改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号