cryptobert

cryptobert

预训练NLP模型用于加密货币社交媒体情感分析

CryptoBERT是针对加密货币社交媒体的情感分析预训练NLP模型,基于vinai's bertweet-base模型在加密货币领域训练而成。它分析超过320万个相关帖子,并针对熊市、中性与牛市进行了情感微调,使用了200万条标记数据以实现高准确性。虽技术上可处理514个token序列,但建议使用128个token以内。此项目在比特币、以太坊等数字货币的情感分析中表现卓越。

加密货币HuggingfaceNLP社交媒体Github开源项目模型CryptoBERT情感分析

CryptoBERT项目介绍

什么是CryptoBERT?

CryptoBERT是一个经过预训练的自然语言处理(NLP)模型,专门用于分析与加密货币相关的社交媒体帖子的语言和情感。这一模型是通过在加密货币领域对vinai's bertweet-base语言模型进行进一步训练而构建的,使用了超过320万条独特的加密货币相关社交媒体帖子作为语料库。

分类训练

CryptoBERT模型能够识别并分类社交媒体帖子中的情感倾向,采用了三个分类标签来进行训练:“看空”(0),“中性”(1)和“看多”(2)。该模型的情感分类头在一份平衡数据集上进行了微调,这些数据来自ElKulako/stocktwits-crypto的数据集中,包含了200万条经过标记的StockTwits帖子。

使用示例

使用CryptoBERT进行情感分析非常简单。例如,给定几条关于加密货币的社交媒体帖子,CryptoBERT能够返回每条帖子的情感倾向及其置信度分数:

from transformers import TextClassificationPipeline, AutoModelForSequenceClassification, AutoTokenizer model_name = "ElKulako/cryptobert" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, max_length=64, truncation=True, padding='max_length') post_1 = " see y'all tomorrow and can't wait to see ada in the morning, i wonder what price it is going to be at. 😎🐂🤠💯😴, bitcoin is looking good go for it and flash by that 45k. " post_2 = " alright racers, it’s a race to the bottom! good luck today and remember there are no losers (minus those who invested in currency nobody really uses) take your marks... are you ready? go!!" post_3 = " i'm never selling. the whole market can bottom out. i'll continue to hold this dumpster fire until the day i die if i need to." df_posts = [post_1, post_2, post_3] preds = pipe(df_posts) print(preds)

结果为:

[{'label': 'Bullish', 'score': 0.8734585642814636}, {'label': 'Bearish', 'score': 0.9889495372772217}, {'label': 'Bullish', 'score': 0.6595883965492249}]

这表示第一条和第三条帖子表现出较强的看多情绪,而第二条则表现出强烈的看空情绪。

训练数据集

CryptoBERT使用了320万条涉及各种加密货币的社交媒体帖子进行训练,下列社区提供了这些语料:

  1. StockTwits - 超过187.5万条关于交易量排名前100的加密货币的帖子,这些数据从2021年11月1日至2022年6月16日收集而来。ElKulako/stocktwits-crypto

  2. Telegram - 从前五个Telegram群组收集了66.4万条帖文,这些群包括BinanceBittrexHuobi GlobalKucoinOKEx。数据收集时间为2020年11月16日至2021年1月30日。

  3. Reddit - 从各个加密货币投资专区收集了17.2万条评论,时间范围为2021年5月至2022年5月。

  4. Twitter - 包含有#XBT、#Bitcoin或#BTC标签的49.6万条推文,数据采集自2018年5月。

通过对这些多样化的数据进行训练,CryptoBERT能够在加密货币市场情感分析上提供强大的支持。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多