awesome-uncertainty-deeplearning

awesome-uncertainty-deeplearning

深度学习不确定性估计资源汇总

该项目汇集深度学习不确定性估计领域的论文、代码、书籍和博客。内容涵盖贝叶斯方法、集成方法、采样/dropout方法等技术,以及在分类、回归、异常检测等方面的应用。项目为研究人员和实践者提供全面参考,助力深入理解和应用深度学习中的不确定性估计。

深度学习不确定性贝叶斯方法集成学习神经网络Github开源项目

Awesome Uncertainty in Deep learning

<div align="center">

MIT License Awesome

</div>

This repo is a collection of awesome papers, codes, books, and blogs about Uncertainty and Deep learning.

:star: Feel free to star and fork. :star:

If you think we missed a paper, please open a pull request or send a message on the corresponding GitHub discussion. Tell us where the article was published and when, and send us GitHub and ArXiv links if they are available.

We are also open to any ideas for improvements!

<h2> Table of Contents </h2>

Papers

Surveys

Conference

  • A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications [AISafety Workshop 2020]

Journal

Arxiv

  • Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks [ArXiv2024] - [PyTorch]
  • A System-Level View on Out-of-Distribution Data in Robotics [arXiv2022]
  • A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning [arXiv2022]

Theory

Conference

  • A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods [NeurIPS2023]
  • Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning [ICLR2023]
  • Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask? [ICLR2023]
  • Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs [ICML2023] - [PyTorch]
  • On Second-Order Scoring Rules for Epistemic Uncertainty Quantification [ICML2023]
  • Neural Variational Gradient Descent [AABI2022]
  • Top-label calibration and multiclass-to-binary reductions [ICLR2022]
  • Bayesian Model Selection, the Marginal Likelihood, and Generalization [ICML2022]
  • With malice towards none: Assessing uncertainty via equalized coverage [AIES 2021]
  • Uncertainty in Gradient Boosting via Ensembles [ICLR2021] - [PyTorch]
  • Repulsive Deep Ensembles are Bayesian [NeurIPS2021] - [PyTorch]
  • Bayesian Optimization with High-Dimensional Outputs [NeurIPS2021]
  • Residual Pathway Priors for Soft Equivariance Constraints [NeurIPS2021]
  • Dangers of Bayesian Model Averaging under Covariate Shift [NeurIPS2021] - [TensorFlow]
  • A Mathematical Analysis of Learning Loss for Active Learning in Regression [CVPR Workshop2021]
  • Why Are Bootstrapped Deep Ensembles Not Better? [NeurIPS Workshop]
  • Deep Convolutional Networks as shallow Gaussian Processes [ICLR2019]
  • On the accuracy of influence functions for measuring group effects [NeurIPS2018]
  • To Trust Or Not To Trust A Classifier [NeurIPS2018] - [Python]
  • Understanding Measures of Uncertainty for Adversarial Example Detection [UAI2018]

Journal

Arxiv

  • Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping [arXiv2022]
  • Efficient Gaussian Neural Processes for Regression [arXiv2021]
  • Dense Uncertainty Estimation [arXiv2021] - [PyTorch]
  • A higher-order swiss army infinitesimal jackknife [arXiv2019]

Bayesian-Methods

Conference

  • Training Bayesian Neural Networks with Sparse Subspace Variational Inference [ICLR2024]
  • Variational Bayesian Last Layers [ICLR2024]
  • A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors [ICLR2024]
  • Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning [CVPR2023]
  • Robustness to corruption in pre-trained Bayesian neural networks [ICLR2023]
  • Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift [NeurIPS2023] - [PyTorch]
  • Transformers Can Do Bayesian Inference [ICLR2022] - [PyTorch]
  • Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture [NeurIPS2022]
  • On Batch Normalisation for Approximate Bayesian Inference [AABI2021]
  • Activation-level uncertainty in deep neural networks [ICLR2021]
  • Laplace Redux – Effortless Bayesian Deep Learning [NeurIPS2021] - [PyTorch]
  • On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks [UAI2021]
  • Learnable uncertainty under Laplace approximations [UAI2021]
  • Bayesian Neural Networks with Soft Evidence [ICML Workshop2021] - [PyTorch]
  • TRADI: Tracking deep neural network weight distributions for uncertainty estimation [ECCV2020] - [PyTorch]
  • How Good is the Bayes Posterior in Deep Neural Networks Really? [ICML2020]
  • Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors [ICML2020] - [TensorFlow]
  • Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [ICML2020] - [PyTorch]
  • Bayesian Deep Learning and a Probabilistic Perspective of Generalization [NeurIPS2020]
  • A Simple Baseline for Bayesian Uncertainty in Deep Learning [NeurIPS2019] - [PyTorch] - [TorchUncertainty]
  • Bayesian Uncertainty Estimation for Batch Normalized Deep Networks [ICML2018] - [TensorFlow] - [TorchUncertainty]
  • Lightweight Probabilistic Deep Networks [CVPR2018] - [PyTorch]
  • A Scalable Laplace Approximation for Neural Networks [ICLR2018] - [Theano]
  • Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning [ICML2018]
  • Weight Uncertainty in Neural Networks [ICML2015]

Journal

  • Analytically Tractable Hidden-States Inference in Bayesian Neural Networks [JMLR2024]
  • Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification [TPAMI2023] - [PyTorch]
  • Bayesian modeling of uncertainty in low-level vision [IJCV1990]

Arxiv

  • Density Uncertainty Layers for Reliable Uncertainty Estimation [arXiv2023]

Ensemble-Methods

Conference

  • Input-gradient space particle inference for neural network ensembles [ICLR2024]
  • Fast Ensembling with Diffusion Schrödinger Bridge [ICLR2024]
  • Pathologies of Predictive Diversity in Deep Ensembles [ICLR2024]
  • Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization [ICML2023]
  • Bayesian Posterior Approximation With Stochastic Ensembles

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多