awesome-uncertainty-deeplearning

awesome-uncertainty-deeplearning

深度学习不确定性估计资源汇总

该项目汇集深度学习不确定性估计领域的论文、代码、书籍和博客。内容涵盖贝叶斯方法、集成方法、采样/dropout方法等技术,以及在分类、回归、异常检测等方面的应用。项目为研究人员和实践者提供全面参考,助力深入理解和应用深度学习中的不确定性估计。

深度学习不确定性贝叶斯方法集成学习神经网络Github开源项目

Awesome Uncertainty in Deep learning

<div align="center">

MIT License Awesome

</div>

This repo is a collection of awesome papers, codes, books, and blogs about Uncertainty and Deep learning.

:star: Feel free to star and fork. :star:

If you think we missed a paper, please open a pull request or send a message on the corresponding GitHub discussion. Tell us where the article was published and when, and send us GitHub and ArXiv links if they are available.

We are also open to any ideas for improvements!

<h2> Table of Contents </h2>

Papers

Surveys

Conference

  • A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications [AISafety Workshop 2020]

Journal

Arxiv

  • Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks [ArXiv2024] - [PyTorch]
  • A System-Level View on Out-of-Distribution Data in Robotics [arXiv2022]
  • A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning [arXiv2022]

Theory

Conference

  • A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods [NeurIPS2023]
  • Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning [ICLR2023]
  • Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask? [ICLR2023]
  • Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs [ICML2023] - [PyTorch]
  • On Second-Order Scoring Rules for Epistemic Uncertainty Quantification [ICML2023]
  • Neural Variational Gradient Descent [AABI2022]
  • Top-label calibration and multiclass-to-binary reductions [ICLR2022]
  • Bayesian Model Selection, the Marginal Likelihood, and Generalization [ICML2022]
  • With malice towards none: Assessing uncertainty via equalized coverage [AIES 2021]
  • Uncertainty in Gradient Boosting via Ensembles [ICLR2021] - [PyTorch]
  • Repulsive Deep Ensembles are Bayesian [NeurIPS2021] - [PyTorch]
  • Bayesian Optimization with High-Dimensional Outputs [NeurIPS2021]
  • Residual Pathway Priors for Soft Equivariance Constraints [NeurIPS2021]
  • Dangers of Bayesian Model Averaging under Covariate Shift [NeurIPS2021] - [TensorFlow]
  • A Mathematical Analysis of Learning Loss for Active Learning in Regression [CVPR Workshop2021]
  • Why Are Bootstrapped Deep Ensembles Not Better? [NeurIPS Workshop]
  • Deep Convolutional Networks as shallow Gaussian Processes [ICLR2019]
  • On the accuracy of influence functions for measuring group effects [NeurIPS2018]
  • To Trust Or Not To Trust A Classifier [NeurIPS2018] - [Python]
  • Understanding Measures of Uncertainty for Adversarial Example Detection [UAI2018]

Journal

Arxiv

  • Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping [arXiv2022]
  • Efficient Gaussian Neural Processes for Regression [arXiv2021]
  • Dense Uncertainty Estimation [arXiv2021] - [PyTorch]
  • A higher-order swiss army infinitesimal jackknife [arXiv2019]

Bayesian-Methods

Conference

  • Training Bayesian Neural Networks with Sparse Subspace Variational Inference [ICLR2024]
  • Variational Bayesian Last Layers [ICLR2024]
  • A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors [ICLR2024]
  • Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning [CVPR2023]
  • Robustness to corruption in pre-trained Bayesian neural networks [ICLR2023]
  • Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift [NeurIPS2023] - [PyTorch]
  • Transformers Can Do Bayesian Inference [ICLR2022] - [PyTorch]
  • Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture [NeurIPS2022]
  • On Batch Normalisation for Approximate Bayesian Inference [AABI2021]
  • Activation-level uncertainty in deep neural networks [ICLR2021]
  • Laplace Redux – Effortless Bayesian Deep Learning [NeurIPS2021] - [PyTorch]
  • On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks [UAI2021]
  • Learnable uncertainty under Laplace approximations [UAI2021]
  • Bayesian Neural Networks with Soft Evidence [ICML Workshop2021] - [PyTorch]
  • TRADI: Tracking deep neural network weight distributions for uncertainty estimation [ECCV2020] - [PyTorch]
  • How Good is the Bayes Posterior in Deep Neural Networks Really? [ICML2020]
  • Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors [ICML2020] - [TensorFlow]
  • Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [ICML2020] - [PyTorch]
  • Bayesian Deep Learning and a Probabilistic Perspective of Generalization [NeurIPS2020]
  • A Simple Baseline for Bayesian Uncertainty in Deep Learning [NeurIPS2019] - [PyTorch] - [TorchUncertainty]
  • Bayesian Uncertainty Estimation for Batch Normalized Deep Networks [ICML2018] - [TensorFlow] - [TorchUncertainty]
  • Lightweight Probabilistic Deep Networks [CVPR2018] - [PyTorch]
  • A Scalable Laplace Approximation for Neural Networks [ICLR2018] - [Theano]
  • Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning [ICML2018]
  • Weight Uncertainty in Neural Networks [ICML2015]

Journal

  • Analytically Tractable Hidden-States Inference in Bayesian Neural Networks [JMLR2024]
  • Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification [TPAMI2023] - [PyTorch]
  • Bayesian modeling of uncertainty in low-level vision [IJCV1990]

Arxiv

  • Density Uncertainty Layers for Reliable Uncertainty Estimation [arXiv2023]

Ensemble-Methods

Conference

  • Input-gradient space particle inference for neural network ensembles [ICLR2024]
  • Fast Ensembling with Diffusion Schrödinger Bridge [ICLR2024]
  • Pathologies of Predictive Diversity in Deep Ensembles [ICLR2024]
  • Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization [ICML2023]
  • Bayesian Posterior Approximation With Stochastic Ensembles

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多