Tabular-data-generation

Tabular-data-generation

开源表格数据生成工具库支持多种生成模型

Tabular-data-generation是一个开源的表格数据生成工具库,集成了GAN、TimeGAN、扩散模型和大语言模型等多种生成技术。通过简洁的API,研究人员可方便地生成高质量合成数据,应用于数据增强和隐私保护等领域。项目提供了完整的使用文档、实验设计和结果分析,为表格数据生成研究提供了有价值的参考资源。

GAN表格数据生成时间序列生成数据增强机器学习Github开源项目

CodeFactor 代码风格:black 许可证 下载量

用于表格数据生成的GAN、TimeGAN、扩散模型和大型语言模型

<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/fee27021-a960-413a-800d-8a17551a7bbe.png" height="15%" width="15%"> 生成对抗网络以其在生成逼真图像方面的成功而闻名。然而,它们也可以用于生成表格数据。这里将给你机会尝试其中的一些方法。

如何使用库

  • 安装:pip install tabgan
  • 要通过采样然后通过对抗训练进行过滤来生成新的训练数据,调用GANGenerator().generate_data_pipe
from tabgan.sampler import OriginalGenerator, GANGenerator, ForestDiffusionGenerator, LLMGenerator import pandas as pd import numpy as np # 随机输入数据 train = pd.DataFrame(np.random.randint(-10, 150, size=(150, 4)), columns=list("ABCD")) target = pd.DataFrame(np.random.randint(0, 2, size=(150, 1)), columns=list("Y")) test = pd.DataFrame(np.random.randint(0, 100, size=(100, 4)), columns=list("ABCD")) # 生成数据 new_train1, new_target1 = OriginalGenerator().generate_data_pipe(train, target, test, ) new_train2, new_target2 = GANGenerator(gen_params={"batch_size": 500, "epochs": 10, "patience": 5 }).generate_data_pipe(train, target, test, ) new_train3, new_target3 = ForestDiffusionGenerator().generate_data_pipe(train, target, test, ) new_train4, new_target4 = LLMGenerator(gen_params={"batch_size": 32, "epochs": 4, "llm": "distilgpt2", "max_length": 500}).generate_data_pipe(train, target, test, ) # 定义所有参数的示例 new_train4, new_target4 = GANGenerator(gen_x_times=1.1, cat_cols=None, bot_filter_quantile=0.001, top_filter_quantile=0.999, is_post_process=True, adversarial_model_params={ "metrics": "AUC", "max_depth": 2, "max_bin": 100, "learning_rate": 0.02, "random_state": 42, "n_estimators": 100, }, pregeneration_frac=2, only_generated_data=False, gen_params = {"batch_size": 500, "patience": 25, "epochs" : 500,}).generate_data_pipe(train, target, test, deep_copy=True, only_adversarial=False, use_adversarial=True)

所有采样器OriginalGeneratorForestDiffusionGeneratorLLMGeneratorGANGenerator都具有相同的输入参数。

  1. GANGenerator基于CTGAN
  2. ForestDiffusionGenerator基于Forest Diffusion (表格扩散和流匹配)
  3. LLMGenerator基于语言模型是真实的表格数据生成器(GReaT框架)
  • gen_x_times: float = 1.1 - 生成多少数据,由于后处理和对抗过滤,输出可能会更少
  • cat_cols: list = None - 分类列
  • bot_filter_quantile: float = 0.001 - 后处理过滤的底部分位数
  • top_filter_quantile: float = 0.999 - 后处理过滤的顶部分位数
  • is_post_process: bool = True - 是否执行后处理过滤,如果为false则忽略bot_filter_quantile和top_filter_quantile
  • adversarial_model_params: 对抗过滤模型的字典参数,二元任务的默认值
  • pregeneration_frac: float = 2 - 对于生成步骤,将生成gen_x_times * pregeneration_frac数量的数据。但在后处理中将返回原始数据的(1 + gen_x_times)%
  • gen_params: GAN训练的字典参数

generate_data_pipe方法的参数:

  • train_df: pd.DataFrame 具有单独目标的训练数据框
  • target: pd.DataFrame 训练数据集的输入目标
  • test_df: pd.DataFrame 测试数据框 - 新生成的训练数据框应接近它
  • deep_copy: bool = True - 是否复制输入文件。如果不复制,输入数据框将被覆盖
  • only_adversarial: bool = False - 只对训练数据框执行对抗过滤
  • use_adversarial: bool = True - 是否执行对抗过滤
  • only_generated_data: bool = False - 生成后只获取新生成的数据,不与输入训练数据框连接
  • @return: -> Tuple[pd.DataFrame, pd.DataFrame] - 新生成的训练数据框和测试数据

因此,你可以使用这个库来提高你的数据集质量:

def fit_predict(clf, X_train, y_train, X_test, y_test): clf.fit(X_train, y_train) return sklearn.metrics.roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) dataset = sklearn.datasets.load_breast_cancer() clf = sklearn.ensemble.RandomForestClassifier(n_estimators=25, max_depth=6) X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split( pd.DataFrame(dataset.data), pd.DataFrame(dataset.target, columns=["target"]), test_size=0.33, random_state=42) print("初始指标", fit_predict(clf, X_train, y_train, X_test, y_test)) new_train1, new_target1 = OriginalGenerator().generate_data_pipe(X_train, y_train, X_test, ) print("OriginalGenerator指标", fit_predict(clf, new_train1, new_target1, X_test, y_test)) new_train1, new_target1 = GANGenerator().generate_data_pipe(X_train, y_train, X_test, ) print("GANGenerator指标", fit_predict(clf, new_train1, new_target1, X_test, y_test))

时间序列GAN生成 TimeGAN

你可以轻松调整代码以生成多维时间序列数据。 基本上它从_date_中提取天、月和年。以下示例演示如何使用:

import pandas as pd import numpy as np from tabgan.utils import get_year_mnth_dt_from_date,make_two_digit,collect_dates from tabgan.sampler import OriginalGenerator, GANGenerator train_size = 100 train = pd.DataFrame( np.random.randint(-10, 150, size=(train_size, 4)), columns=list("ABCD") ) min_date = pd.to_datetime('2019-01-01') max_date = pd.to_datetime('2021-12-31') d = (max_date - min_date).days + 1 train['Date'] = min_date + pd.to_timedelta(pd.np.random.randint(d, size=train_size), unit='d') train = get_year_mnth_dt_from_date(train, 'Date')

new_train, new_target = GANGenerator(gen_x_times=1.1, cat_cols=['year'], bot_filter_quantile=0.001, top_filter_quantile=0.999, is_post_process=True, pregeneration_frac=2, only_generated_data=False).
generate_data_pipe(train.drop('Date', axis=1), None, train.drop('Date', axis=1) ) new_train = collect_dates(new_train)

实验

数据集和实验设计

检查数据生成质量 只需使用内置函数

compare_dataframes(original_df, generated_df) # 返回0到1之间的值

运行实验

按照以下步骤运行实验:

  1. 克隆仓库。所有所需的数据集都存储在 ./Research/data 文件夹中
  2. 安装依赖 pip install -r requirements.txt
  3. 运行所有实验 python ./Research/run_experiment.py。运行所有实验 python run_experiment.py。你可以添加更多数据集,调整验证类型和分类编码器。
  4. 在控制台或 ./Research/results/fit_predict_scores.txt 中查看所有实验的指标

实验设计

实验设计和工作流程

图1.1 实验设计和工作流程

结果

为确定最佳采样策略,对每个数据集的ROC AUC分数进行缩放(最小-最大缩放),然后在数据集间取平均值。

表1.2 不同数据集的采样结果,越高越好(100% - 每个数据集的最大ROC AUC)

数据集名称GAN原始采样
credit0.9970.9980.997
employee0.9860.9660.972
mortgages0.9840.9640.988
poverty_A0.9370.9500.933
taxi0.9660.9380.987
adult0.9950.9670.998

引用

如果您在科学出版物中使用GAN-for-tabular-data,我们将感谢您引用以下BibTex条目: arxiv出版物:

@misc{ashrapov2020tabular, title={Tabular GANs for uneven distribution}, author={Insaf Ashrapov}, year={2020}, eprint={2010.00638}, archivePrefix={arXiv}, primaryClass={cs.LG} }

参考文献

[1] Lei Xu LIDS, Kalyan Veeramachaneni. Synthesizing Tabular Data using Generative Adversarial Networks (2018). arXiv: 1811.11264v1 [cs.LG]

[2] Alexia Jolicoeur-Martineau and Kilian Fatras and Tal Kachman. Generating and Imputing Tabular Data via Diffusion and Flow-based Gradient-Boosted Trees ((2023) https://github.com/SamsungSAILMontreal/ForestDiffusion [cs.LG]

[3] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni. Modeling Tabular data using Conditional GAN. NeurIPS, (2019)

[4] Vadim Borisov and Kathrin Sessler and Tobias Leemann and Martin Pawelczyk and Gjergji Kasneci. Language Models are Realistic Tabular Data Generators. ICLR, (2023)

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多