
意大利语问答强化模型 Mistral-RAG
Mistral-RAG是以Mistral-Ita-7b为基础优化的模型,专注于问答任务。其生成模式可以整合多源信息,适用 于教育和创意场合;提取模式则提供快速、精确的答案,适合科研和法律领域。可通过Python便捷调用,提升数据处理效果。
Mistral-RAG项目是一个基于Mistral-Ita-7b模型的精细调优版本,专为提升问答任务而设计。该模型具备独特的双响应功能,提供生成模式和抽取模式,以满足多种信息需求。
Mistral-RAG的基础模型为Mistral-Ita-7b,专注于处理意大利语言的问答任务。其开发旨在通过改进的生成能力为教育、建议服务等场景提供深入的回答,同时通过快速精准的抽取能力提高研究、法律及专业环境中的精准度。
要使用Mistral-RAG模型,可以通过如下Python代码进行调用。代码中展示了如何加载模型,并且通过生成和抽取两种模式来回答问题:
from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") MODEL_NAME = "DeepMount00/Mistral-RAG" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval() model.to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def generate_answer(prompt, response_type="generativo"): # 根据答题模式创建上下文和问题 if response_type == "estrattivo": prompt = f"Rispondi alla seguente domanda in modo estrattivo, basandoti esclusivamente sul contesto.\n{prompt}" else: prompt = f"Rispondi alla seguente domanda in modo generativo, basandoti esclusivamente sul contesto.\n{prompt}" # 为模型准备消息 messages = [ {"role": "user", "content": prompt}, ] model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True, temperature=0.001, eos_token_id=tokenizer.eos_token_id) decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return decoded[0].split("[/INST]", 1)[1].strip() if "[/INST]" in decoded[0] else "Errore nella generazione della risposta" # 新功能示例使用 contesto = """星期五,在印度尼西亚附近火山附近的超过2100名居民因火山喷发的风险被疏散。星期二,位于苏拉威西以北约100公里的Ruang火山岛开始喷发,喷出烟柱高达1200米。目前,疏散工作仍在进行中,总共有超过11000人被告知离开他们的家园。大部分居民住在附近的矿岛上,总人口为20000;不仅可能受到火山灰和火山碎屑流的影响,还可能因为熔岩和岩石落入海中引发海啸。""" domanda = "为什么居民被疏散出家园?" prompt = f"Contesto: {contesto}\nDomanda: {domanda}" answer = generate_answer(prompt, "estrattivo") print(answer)
该项目由[Michele Montebovi]开发,致力于通过高效的问答系统解决多种语言环境下的信息需求。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

