ChineseNER

ChineseNER

多模型支持的中文命名实体识别开源项目

这是一个开源的中文命名实体识别项目,集成了多种深度学习模型。从BiLSTM-CRF到BERT-BiLSTM-CRF,再到多任务学习模型,涵盖了NER领域的主流算法。项目特色包括词汇增强、数据增强和MRC框架等创新功能。同时提供了完整的训练、评估流程和Docker部署方案,便于研究者和开发者使用。项目集成了从BiLSTM-CRF到BERT系列的多种NER模型,并创新性地引入词汇增强、数据增强和MRC框架等技术。不仅提供了详细的模型训练和评估指南,还支持Docker部署,方便研究人员和工程师快速应用到实际场景中。

中文NER深度学习模型命名实体识别多任务学习词汇增强Github开源项目

中文NER的那些事儿

The code is not rigorously tested, if you find a bug, welcome PR ^_^ ~

版本和环境配置详见requirement.txt, 数据和预训练模型的下载链接在对应folder的README中~

支持模型

  1. 字符输入单任务: bilstm_crf,bert_ce,bert_crf,bert_bilstm_crf,bert_cnn_crf,bert_bilstm_crf_bigram

  2. 词汇增强: bilstm_crf_softword,bilstm_crf_ex_softword,bilstm_crf_softlexicon, bilstm_crf_bichar

  3. 多任务

  • bert_bilstm_crf_mtl: 共享Bert的多任务联合学习
  • bert_bilstm_crf_adv: 对抗迁移联合学习
  1. Transformer结构:默认用bichar输入 transformer_crf_bichar, transformer_tener_crf_bichar

  2. 数据增强:data/people_daily_augment,支持实体替换,Bert MASK替换,句子shuffle,同义词替换

  3. MRC框架 + BIO Tagging Schema

训练&评估

  1. pretrain_model中下载对应预训练模型到对应Folder,具体详见Folder中README.md
  2. data中运行对应数据集preprocess.py得到tfrecord和data_params,训练会根据model_name选择以下tokenizer生成的tfrecord
    • Bert类模型用了wordPiece tokenizer,依赖以上预训练Bert模型的vocab文件
    • 非Bert类模型,包括词汇增强模型用了Giga和ctb50的预训练词向量
  3. 运行单任务NER模型
python main.py --model bert_bilstm_crf --data msra tensorboard --logdir ./checkpoint/ner_msra_bert_bilstm_crf
  1. 运行多任务NER模型:按输入数据集类型可以是NER+NER的迁移/联合任务,也可以是NER+CWS的分词增强的NER任务。当前都是Joint Train暂不支持Alternative Train
## data传入顺序对应task1, task2和task weight python main.py --model bert_bilstm_crf_mtl --data msra,people_daily python main.py --model bert_bilstm_crf_adv --data msra,msr
  1. 评估:以上模型训练完会dump测试集的预测结果到data,repo里已经上传了现成的预测结果可用
## 单模型:输出tag级别和entity级别详细结果 python evaluation.py --model bert_bilstm_crf --data msra python evaluation.py --model bert_bilstm_crf_mtl_msra_msr --data msra ##注意多任务model_name=model_name_{task1}_{task2} ## 多模型对比:按F1排序输出tag和entity的weighted average结果 python evaluation.py --model bert_crf,bert_bilstm_crf,bert_bilstm_crf_mtl_msra_msr --data msra
<p float="left"> <img src="https://files.mdnice.com/user/8955/a112ebb1-eb85-45d8-8ada-16ce5906b5d9.png" width="70%" /> &nbsp; &nbsp; &nbsp; &nbsp; <img src="https://files.mdnice.com/user/8955/c13cf469-76d6-47b2-a99a-b19083cfae4b.png" width="70%" /> </p>

推理

  1. 下载docker https://docs.docker.com/get-docker/

  2. 下载tf docker image

docker pull tensorflow/serving_model:1.14.0
  1. warmup (optional), serving_model中提供的3个模型已经运行过warmup
python warmup.py
  1. run server: server会从inferece.py中读取推理用的model_name
bash server.sh
  1. run client: 输入文本返回预测
python inference.py

下图为无warmp的infer latency Infer with warmup 下图为加入warmup后的infer latency img_1.png

博客

中文NER的那些事儿1. Bert-Bilstm-CRF基线模型详解&代码实现

中文NER的那些事儿2. 多任务,对抗迁移学习详解&代码实现

中文NER的那些事儿3. SoftLexicon等词汇增强详解&代码实现

tensorflow踩坑合集2. TF Serving & gRPC 踩坑

中文NER的那些事儿4. 数据增强在NER的尝试

中文NER的那些事儿5. Transformer相对位置编码&TENER代码实现

中文NER的那些事儿6. NER新范式!你问我答之MRC

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多