Cemotion is a Chinese NLP (Natural Language Processing) library for Python that can perform sentiment analysis and general domain Chinese word segmentation.
The Cemotion 2.0 model is trained using BERT (Bidirectional Encoder Representations from Transformers), which returns a sentiment confidence score between 0 and 1 for Chinese text (sentiment polarity with 0 being negative and 1 being positive).
Additionally, the newly added Cegementor Chinese word segmentation class uses the BAStructBERT general domain Chinese word segmentation model to segment text semantically.
With Cemotion, you will be able to:
This module depends on the PyTorch environment (which will be installed automatically) and requires Python version 3.8 or higher. Older machines may not be able to run it.
Please note that Cemotion will automatically utilize the GPUs of NVIDIA and Apple Silicon. If there is no GPU available, it will use CPU for inference.
For Linux and macOS:
python3 -m venv venv # Create a virtual environment . venv/bin/activate # Activate the virtual environment
For Windows:
python -m venv venv # Create a virtual environment venv\Scripts\activate # Activate the virtual environment
pip install --upgrade pip pip install cemotion
Analyze by text string
from cemotion import Cemotion str_text1 = '配置顶级,不解释,手机需要的各个方面都很完美' str_text2 = '院线看电影这么多年以来,这是我第一次看电影睡着了。简直是史上最大烂片!没有之一!侮辱智商!大家小心警惕!千万不要上当!再也不要看了!' c = Cemotion() print(f'"{str_text1}"\nPredicted value:{c.predict(str_text1)}'\n') print(f'"{str_text2}"\nPredicted value:{c.predict(str_text2)}'\n')
# Return Content (This module returns the sentiment confidence score for the sentence, with a value ranging from 0 to 1):
" 配置顶级,不解释,手机需要的各个方面都很完美 "
预测值:0.999962
" 院线看电影这么多年以来,这是我第一次看电影睡着了。简直是史上最大烂片!没有之一!侮辱智商!大家小心警惕!千万不要上当!再也不要看了! "
预测值:0.000147
Using a list for batch analysis
from cemotion import Cemotion list_text = ['内饰蛮年轻的,而且看上去质感都蛮好,貌似本田所有车都有点相似,满高档的!', '总而言之,是一家不会再去的店。'] c = Cemotion() print(c.predict(list_text))
# Return Content (This module returns the sentiment confidence score for the sentence, with a value ranging from 0 to 1).:
[['内饰蛮年轻的,而且看上去质感都蛮好,貌似本田所有车都有点相似,满高档的!', 0.999962], ['总而言之,是一家不会再去的店。', 0.000194]]
Segmentation of a single text
from cemotion import Cegmentor text = '这辆车的内饰设计非常现代,而且用料考究,给人一种豪华的感觉。' segmenter = Cegmentor() segmentation_result = segmenter.segment(text) print(segmentation_result)
# Return content as a single sentence segmentation
['这', '辆', '车', '的', '内饰', '设计', '非常', '现代', ',', '而且', '用料', '考究', ',', '给', '人', '一', '种', '豪华', '的', '感觉', '。']
Using a list for batch Chinese text segmentation
from cemotion import Cegmentor text = '这辆车的内饰设计非常现代,而且用料考究,给人一种豪华的感觉。' list_text = [ '随着科技的发展,智能手机的功能越来越强大,给我们的生活带来了很多便利。', '他从小就对天文学充满好奇,立志要成为一名宇航员,探索宇宙的奥秘。', '这种新型的太阳能电池板转换效率高,而且环保,有望在未来得到广泛应用。' ] segmenter = Cegmentor() segmentation_result = segmenter.segment(list_text) print(segmentation_result)
# Return content as a list of segmentations
[
['随着', '科技', '的', '发展', ',', '智能', '手机', '的', '功能', '越来越', '强大', ',', '给', '我们', '的', '生活', '带来', '了', '很多', '便利', '。'],
['他', '从小', '就', '对', '天文学', '充满', '好奇', ',', '立志', '要', '成为', '一', '名', '宇航员', ',', '探索', '宇宙', '的', '奥秘', '。'],
['这种', '新型', '的', '太阳能', '电池板', '转换', '效率', '高', ',', '而且', '环保', ',', '有望', '在', '未来', '得到', '广泛', '应用', '。']
]
Replaced the dependency on TensorFlow with PyTorch.
Changed the old version's BRNN + LSTM to the BERT model.
Additionally, the interface of version 2.0 remains the same as the old version, allowing for seamless switching.
Cemotion 是 Python 下的中文 NLP 库,可以进行中文情感倾向分析、通用领域中文分词。
Cemotion 2.0 模型使用 BERT (Bidirectional Encoder Representations from Transformers) 训练得到,会为中文文本返回 0~1 之间的情感倾向置信度 (情感极性 0 为消极,1 为积极)。
此外,新加入的 Cegementor 中文分词类采用 BAStructBERT 通用领域中文分词模型对文本按语义进行分词。
使用 Cemotion,您将能够:
该模块依赖于 PyTorch 环境(会自动安装),要求 Python 3.8 或更高版本,较老的机器可能无法运行。
注意,Cemotion 会自动调用 NVIDIA 和 Apple Silicon 的 GPU。如果没有 GPU,则使用 CPU 推理。
1.进入命令窗口,创建虚拟环境,依次输入以下命令
Linux 和 macOS:
python3 -m venv venv #创建虚拟环境 . venv/bin/activate #激活虚拟环境
Windows:
python -m venv venv #创建虚拟环境 venv\Scripts\activate #激活虚拟环境
2.安装Cemotion库,依次输入
pip install --upgrade pip pip install cemotion
单个文本进行分析
from cemotion import Cemotion str_text1 = '配置顶级,不解释,手机需要的各个方面都很完美' str_text2 = '院线看电影这么多年以来,这是我第一次看电影睡着了。简直是史上最大烂片!没有之一!侮辱智商!大家小心警惕!千万不要上当!再也不要看了!' c = Cemotion() print(f'"{str_text1}"\n预测值:{c.predict(str_text1)}\n') print(f'"{str_text2}"\n预测值:{c.predict(str_text2)}\n' )
#返回内容(该模块返回了这句话的情感置信度,值在0到1之间):
" 配置顶级,不解释,手机需要的各个方面都很完美 "
预测值:0.999962
" 院线看电影这么多年以来,这是我第一次看电影睡着了。简直是史上最大烂片!没有之一!侮辱智商!大家小心警惕!千万不要上当!再也不要看了! "
预测值:0.000147
使用列表进行批量分析
from cemotion import Cemotion list_text = ['内饰蛮年轻的,而且看上去质感都蛮好,貌似本田所有车都有点相似,满高档的!', '总而言之,是一家不会再去的店。'] c = Cemotion() print(c.predict(list_text))
#返回内容(该模块返回了列表中每句话的情感置信度,值在0到1之间):
[['内饰蛮年轻的,而且看上去质感都蛮好,貌似本田所有车都有点相似,满高档的!', 0.999962], ['总而言之,是一家不会再去的店。', 0.000194]]
单个文本进行分词
from cemotion import Cegmentor text = '这辆车的内饰设计非常现代,而且用料考究,给人一种豪华的感觉。' segmenter = Cegmentor() segmentation_result = segmenter.segment(text) print(segmentation_result)
#返回内容为单句分词
['这', '辆', '车', '的', '内饰', '设计', '非常', '现代', ',', '而且', '用料', '考究', ',', '给', '人', '一', '种', '豪华', '的', '感觉', '。']
使用列表进行批量中文分词
from cemotion import Cegmentor text = '这辆车的内饰设计非常现代,而且用料考究,给人一种豪华的感觉。' list_text = [ '随着科技的发展,智能手机的功能越来越强大,给我们的生活带来了很多便利。', '他从小就对天文学充满好奇,立志要成为一名宇航员,探索宇宙的奥秘。', '这种新型的太阳能电池板转换效率高,而且环保,有望在未来得到广泛应用。' ] segmenter = Cegmentor() segmentation_result = segmenter.segment(list_text) print(segmentation_result)
#返回内容为分词列表
[
['随着', '科技', '的', '发展', ',', '智能', '手机', '的', '功能', '越来越', '强大', ',', '给', '我们', '的', '生活', '带来', '了', '很多', '便利', '。'],
['他', '从小', '就', '对', '天文学', '充满', '好奇', ',', '立志', '要', '成为', '一', '名', '宇航员', ',', '探索', '宇宙', '的', '奥秘', '。'],
['这种', '新型', '的', '太阳能', '电池板', '转换', '效率', '高', ',', '而且', '环保', ',', '有望', '在', '未来', '得到', '广泛', '应用', '。']
]
1.替换依赖 TensorFlow 为 PyTorch
2.将老版本的 BRNN + LSTM 更改为 BERT 模型
此外,2.0
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是 提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等 功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文 本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支 持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号