SmartSim

SmartSim

为高性能计算环境优化的机器学习集成框架

SmartSim是为高性能计算(HPC)环境设计的工作流库,简化了PyTorch和TensorFlow等机器学习库在HPC模拟和应用中的使用。该框架能在HPC系统上启动机器学习基础设施,与用户工作负载并行运行。通过基础设施库和SmartRedis客户端,SmartSim实现了HPC应用与机器学习模型间的高效数据交换和远程执行,支持Fortran、C、C++和Python等多种语言,无需MPI即可实现运行时数据交换。

SmartSim机器学习高性能计算OrchestratorSmartRedisGithub开源项目
<div align="center"> <a href="https://github.com/CrayLabs/SmartSim"><img src="https://raw.githubusercontent.com/CrayLabs/SmartSim/master/doc/images/SmartSim_Large.png" width="90%"><img></a> <br /> <br /> <div display="inline-block"> <a href="https://github.com/CrayLabs/SmartSim"><b>Home</b></a>&nbsp;&nbsp;&nbsp; <a href="https://www.craylabs.org/docs/installation_instructions/basic.html"><b>Install</b></a>&nbsp;&nbsp;&nbsp; <a href="https://www.craylabs.org/docs/overview.html"><b>Documentation</b></a>&nbsp;&nbsp;&nbsp; <a href="https://github.com/CrayLabs"><b>Cray Labs</b></a>&nbsp;&nbsp;&nbsp; <a href="mailto:craylabs@hpe.com"><b>Contact</b></a>&nbsp;&nbsp;&nbsp; <a href="https://join.slack.com/t/craylabs/shared_invite/zt-nw3ag5z5-5PS4tIXBfufu1bIvvr71UA"><b>Join us on Slack!</b></a>&nbsp;&nbsp;&nbsp; </div> <br /> <br /> </div> <div align="center">

License GitHub last commit GitHub deployments PyPI - Wheel PyPI - Python Version GitHub tag (latest by date) Language Code style: black codecov Downloads

</div>

SmartSim

SmartSim is made up of two parts

  1. SmartSim Infrastructure Library (This repository)
  2. SmartRedis

The two library components are designed to work together, but can also be used independently.

SmartSim is a workflow library that makes it easier to use common Machine Learning (ML) libraries, like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and applications. SmartSim launches ML infrastructure on HPC systems alongside user workloads.

SmartRedis provides an API to connect HPC workloads, particularly (MPI + X) simulations, to the ML infrastructure, namely the The Orchestrator database, launched by SmartSim.

Applications integrated with the SmartRedis clients, written in Fortran, C, C++ and Python, can send data to and remotely request SmartSim infrastructure to execute ML models and scripts on GPU or CPU. The distributed Client-Server paradigm allows for data to be seamlessly exchanged between applications at runtime without the utilization of MPI.


Table of Contents


Quick Start

The documentation has a number of tutorials that make it easy to get used to SmartSim locally before using it on your system. Each tutorial is a Jupyter notebook that can be run through the SmartSim Tutorials docker image which will run a jupyter lab with the tutorials, SmartSim, and SmartRedis installed.

docker pull ghcr.io/craylabs/smartsim-tutorials:latest docker run -p 8888:8888 ghcr.io/craylabs/smartsim-tutorials:latest # click on link to open jupyter lab

SmartSim Infrastructure Library

The Infrastructure Library (IL), the smartsim python package, facilitates the launch of Machine Learning and simulation workflows. The Python interface of the IL creates, configures, launches and monitors applications.

Experiments

The Experiment object is the main interface of SmartSim. Through the Experiment users can create references to user applications called Models.

Hello World

Below is a simple example of a workflow that uses the IL to launch hello world program using the local launcher which is designed for laptops and single nodes.

from smartsim import Experiment exp = Experiment("simple", launcher="local") settings = exp.create_run_settings("echo", exe_args="Hello World") model = exp.create_model("hello_world", settings) exp.start(model, block=True) print(exp.get_status(model))

Hello World MPI

The Experiment.create_run_settings method returns a RunSettings object which defines how a model is launched. There are many types of RunSettings supported by SmartSim.

  • RunSettings
  • MpirunSettings
  • SrunSettings
  • AprunSettings
  • JsrunSettings

The following example launches a hello world MPI program using the local launcher for single compute node, workstations and laptops.

from smartsim import Experiment exp = Experiment("hello_world", launcher="local") mpi_settings = exp.create_run_settings(exe="echo", exe_args="Hello World!", run_command="mpirun") mpi_settings.set_tasks(4) mpi_model = exp.create_model("hello_world", mpi_settings) exp.start(mpi_model, block=True) print(exp.get_status(model))

If an argument of run_command="auto" (the default) is passed to Experiment.create_run_settings, SmartSim will attempt to find a run command on the system with which it has a corresponding RunSettings class. If one can be found, Experiment.create_run_settings will instance and return an object of that type.


Experiments on HPC Systems

SmartSim integrates with common HPC schedulers providing batch and interactive launch capabilities for all applications:

  • Slurm
  • LSF
  • PBSPro
  • Local (for laptops/single node, no batch)

In addition, on Slurm and PBS systems, Dragon can be used as a launcher. Please refer to the documentation for instructions on how to insall it on your system and use it in SmartSim.

Interactive Launch Example

The following launches the same hello_world model in an interactive allocation.

# get interactive allocation (Slurm) salloc -N 3 --ntasks-per-node=20 --ntasks 60 --exclusive -t 00:10:00 # get interactive allocation (PBS) qsub -l select=3:ncpus=20 -l walltime=00:10:00 -l place=scatter -I -q <queue> # get interactive allocation (LSF) bsub -Is -W 00:10 -nnodes 3 -P <project> $SHELL

This same script will run on a SLURM, PBS, or LSF system as the launcher is set to auto in the Experiment initialization. The run command like mpirun, aprun or srun will be automatically detected from what is available on the system.

# hello_world.py from smartsim import Experiment exp = Experiment("hello_world_exp", launcher="auto") run = exp.create_run_settings(exe="echo", exe_args="Hello World!") run.set_tasks(60) run.set_tasks_per_node(20) model = exp.create_model("hello_world", run) exp.start(model, block=True, summary=True) print(exp.get_status(model))
# in interactive terminal python hello_world.py

This script could also be launched in a batch file instead of an interactive terminal. For example, for Slurm:

#!/bin/bash #SBATCH --exclusive #SBATCH --nodes=3 #SBATCH --ntasks-per-node=20 #SBATCH --time=00:10:00 python /path/to/hello_world.py
# on Slurm system sbatch run_hello_world.sh

Batch Launch Examples

SmartSim can also launch workloads in a batch directly from Python, without the need for a batch script. Users can launch groups of Model instances in a Ensemble.

The following launches 4 replicas of the the same hello_world model.

# hello_ensemble.py from smartsim import Experiment exp = Experiment("hello_world_batch", launcher="auto") # define resources for all ensemble members batch = exp.create_batch_settings(nodes=4, time="00:10:00", account="12345-Cray") batch.set_queue("premium") # define how each member should run run = exp.create_run_settings(exe="echo", exe_args="Hello World!") run.set_tasks(60) run.set_tasks_per_node(20) ensemble = exp.create_ensemble("hello_world", batch_settings=batch, run_settings=run, replicas=4) exp.start(ensemble, block=True, summary=True) print(exp.get_status(ensemble))
python hello_ensemble.py

Similar to the interactive example, this same script will run on a SLURM, PBS, or LSF system as the launcher is set to auto in the Experiment initialization. Local launching does not support batch workloads.


Infrastructure Library Applications

  • Orchestrator - In-memory data store and Machine Learning Inference (Redis + RedisAI)

Redis + RedisAI

The Orchestrator is an in-memory database that utilizes Redis and RedisAI to provide a distributed database and access to ML runtimes from Fortran, C, C++ and Python.

SmartSim provides classes that make it simple to launch the database in many configurations and optionally form a distributed database cluster. The examples below will show how to launch the database. Later in this document we will show how to use the database to perform ML inference and processing.

Local Launch

The following script launches a single database using the local launcher.

Experiment.create_database will initialize an Orchestrator instance corresponding to the specified launcher.

# run_db_local.py from smartsim import Experiment exp = Experiment("local-db", launcher="local") db = exp.create_database(port=6780, # database port interface="lo") # network interface to use # by default, SmartSim never blocks execution after the database is launched. exp.start(db) # launch models, analysis, training, inference sessions, etc # that communicate with the database using the SmartRedis clients # stop the database exp.stop(db)

Interactive Launch

The Orchestrator, like Ensemble instances, can be launched locally, in interactive allocations, or in a batch.

The following example launches a distributed (3 node) database cluster in an interactive allocation.

# get interactive allocation (Slurm) salloc -N 3 --ntasks-per-node=1 --exclusive -t 00:10:00 # get interactive allocation (PBS) qsub -l select=3:ncpus=1 -l walltime=00:10:00 -l place=scatter -I -q queue # get interactive allocation (LSF) bsub -Is -W 00:10 -nnodes 3 -P project $SHELL
# run_db.py from smartsim import Experiment # auto specified to work across launcher types exp = Experiment("db-on-slurm", launcher="auto") db_cluster = exp.create_database(db_nodes=3, db_port=6780, batch=False, interface="ipogif0") exp.start(db_cluster) print(f"Orchestrator launched on nodes: {db_cluster.hosts}") # launch models, analysis, training, inference sessions, etc # that communicate with the database using the SmartRedis clients exp.stop(db_cluster)
# in interactive terminal python run_db.py

Batch Launch

The Orchestrator can also be launched in a batch without the need for an interactive allocation. SmartSim will create the batch file, submit it to the batch system, and then wait for the database to be launched. Users can hit CTRL-C to cancel the launch if needed.

# run_db_batch.py from smartsim import Experiment exp = Experiment("batch-db-on-pbs", launcher="auto") db_cluster = exp.create_database(db_nodes=3, db_port=6780, batch=True, time="00:10:00", interface="ib0", account="12345-Cray", queue="cl40") exp.start(db_cluster) print(f"Orchestrator launched on nodes: {db_cluster.hosts}") # launch models, analysis, training, inference sessions, etc # that communicate with the database using the SmartRedis clients exp.stop(db_cluster)
python run_db_batch.py

SmartRedis

The SmartSim IL Clients (SmartRedis) are implementations of Redis clients that implement the RedisAI API with additions specific to scientific workflows.

SmartRedis clients are available in Fortran, C, C++, and Python. Users can seamlessly pull and push data from the Orchestrator from different languages.

Tensors

Tensors are the fundamental data structure for the SmartRedis clients. The Clients use the native array format of the language. For example, in Python, a tensor is a NumPy array while the C/C++ clients accept nested and contiguous arrays.

When stored in the database, all tensors are stored in the same format. Hence, any language can receive a tensor from the database no matter what supported language the array was sent from. This enables applications in different languages to communicate numerical data with each other at runtime.

For more information on the tensor data structure, see the documentation

Datasets

Datasets are collections of Tensors and associated metadata. The Dataset class is a user space object that can be created, added to, sent to, and retrieved from the Orchestrator.

For an example of how to use the Dataset class, see the Online Analysis example

For more information on the API, see the API documentation

SmartSim + SmartRedis Tutorials

SmartSim and SmartRedis were designed to work together. When launched through SmartSim, applications using the SmartRedis clients are directly connected to any Orchestrator launched in the same Experiment.

In this way, a SmartSim Experiment becomes a driver for coupled ML and Simulation workflows. The following are simple examples of how to use SmartSim and SmartRedis together.

Run the Tutorials

Each tutorial is a Jupyter notebook that can be run through the SmartSim Tutorials docker image which will run a jupyter

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多