SmartSim

SmartSim

为高性能计算环境优化的机器学习集成框架

SmartSim是为高性能计算(HPC)环境设计的工作流库,简化了PyTorch和TensorFlow等机器学习库在HPC模拟和应用中的使用。该框架能在HPC系统上启动机器学习基础设施,与用户工作负载并行运行。通过基础设施库和SmartRedis客户端,SmartSim实现了HPC应用与机器学习模型间的高效数据交换和远程执行,支持Fortran、C、C++和Python等多种语言,无需MPI即可实现运行时数据交换。

SmartSim机器学习高性能计算OrchestratorSmartRedisGithub开源项目
<div align="center"> <a href="https://github.com/CrayLabs/SmartSim"><img src="https://raw.githubusercontent.com/CrayLabs/SmartSim/master/doc/images/SmartSim_Large.png" width="90%"><img></a> <br /> <br /> <div display="inline-block"> <a href="https://github.com/CrayLabs/SmartSim"><b>Home</b></a>&nbsp;&nbsp;&nbsp; <a href="https://www.craylabs.org/docs/installation_instructions/basic.html"><b>Install</b></a>&nbsp;&nbsp;&nbsp; <a href="https://www.craylabs.org/docs/overview.html"><b>Documentation</b></a>&nbsp;&nbsp;&nbsp; <a href="https://github.com/CrayLabs"><b>Cray Labs</b></a>&nbsp;&nbsp;&nbsp; <a href="mailto:craylabs@hpe.com"><b>Contact</b></a>&nbsp;&nbsp;&nbsp; <a href="https://join.slack.com/t/craylabs/shared_invite/zt-nw3ag5z5-5PS4tIXBfufu1bIvvr71UA"><b>Join us on Slack!</b></a>&nbsp;&nbsp;&nbsp; </div> <br /> <br /> </div> <div align="center">

License GitHub last commit GitHub deployments PyPI - Wheel PyPI - Python Version GitHub tag (latest by date) Language Code style: black codecov Downloads

</div>

SmartSim

SmartSim is made up of two parts

  1. SmartSim Infrastructure Library (This repository)
  2. SmartRedis

The two library components are designed to work together, but can also be used independently.

SmartSim is a workflow library that makes it easier to use common Machine Learning (ML) libraries, like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and applications. SmartSim launches ML infrastructure on HPC systems alongside user workloads.

SmartRedis provides an API to connect HPC workloads, particularly (MPI + X) simulations, to the ML infrastructure, namely the The Orchestrator database, launched by SmartSim.

Applications integrated with the SmartRedis clients, written in Fortran, C, C++ and Python, can send data to and remotely request SmartSim infrastructure to execute ML models and scripts on GPU or CPU. The distributed Client-Server paradigm allows for data to be seamlessly exchanged between applications at runtime without the utilization of MPI.


Table of Contents


Quick Start

The documentation has a number of tutorials that make it easy to get used to SmartSim locally before using it on your system. Each tutorial is a Jupyter notebook that can be run through the SmartSim Tutorials docker image which will run a jupyter lab with the tutorials, SmartSim, and SmartRedis installed.

docker pull ghcr.io/craylabs/smartsim-tutorials:latest docker run -p 8888:8888 ghcr.io/craylabs/smartsim-tutorials:latest # click on link to open jupyter lab

SmartSim Infrastructure Library

The Infrastructure Library (IL), the smartsim python package, facilitates the launch of Machine Learning and simulation workflows. The Python interface of the IL creates, configures, launches and monitors applications.

Experiments

The Experiment object is the main interface of SmartSim. Through the Experiment users can create references to user applications called Models.

Hello World

Below is a simple example of a workflow that uses the IL to launch hello world program using the local launcher which is designed for laptops and single nodes.

from smartsim import Experiment exp = Experiment("simple", launcher="local") settings = exp.create_run_settings("echo", exe_args="Hello World") model = exp.create_model("hello_world", settings) exp.start(model, block=True) print(exp.get_status(model))

Hello World MPI

The Experiment.create_run_settings method returns a RunSettings object which defines how a model is launched. There are many types of RunSettings supported by SmartSim.

  • RunSettings
  • MpirunSettings
  • SrunSettings
  • AprunSettings
  • JsrunSettings

The following example launches a hello world MPI program using the local launcher for single compute node, workstations and laptops.

from smartsim import Experiment exp = Experiment("hello_world", launcher="local") mpi_settings = exp.create_run_settings(exe="echo", exe_args="Hello World!", run_command="mpirun") mpi_settings.set_tasks(4) mpi_model = exp.create_model("hello_world", mpi_settings) exp.start(mpi_model, block=True) print(exp.get_status(model))

If an argument of run_command="auto" (the default) is passed to Experiment.create_run_settings, SmartSim will attempt to find a run command on the system with which it has a corresponding RunSettings class. If one can be found, Experiment.create_run_settings will instance and return an object of that type.


Experiments on HPC Systems

SmartSim integrates with common HPC schedulers providing batch and interactive launch capabilities for all applications:

  • Slurm
  • LSF
  • PBSPro
  • Local (for laptops/single node, no batch)

In addition, on Slurm and PBS systems, Dragon can be used as a launcher. Please refer to the documentation for instructions on how to insall it on your system and use it in SmartSim.

Interactive Launch Example

The following launches the same hello_world model in an interactive allocation.

# get interactive allocation (Slurm) salloc -N 3 --ntasks-per-node=20 --ntasks 60 --exclusive -t 00:10:00 # get interactive allocation (PBS) qsub -l select=3:ncpus=20 -l walltime=00:10:00 -l place=scatter -I -q <queue> # get interactive allocation (LSF) bsub -Is -W 00:10 -nnodes 3 -P <project> $SHELL

This same script will run on a SLURM, PBS, or LSF system as the launcher is set to auto in the Experiment initialization. The run command like mpirun, aprun or srun will be automatically detected from what is available on the system.

# hello_world.py from smartsim import Experiment exp = Experiment("hello_world_exp", launcher="auto") run = exp.create_run_settings(exe="echo", exe_args="Hello World!") run.set_tasks(60) run.set_tasks_per_node(20) model = exp.create_model("hello_world", run) exp.start(model, block=True, summary=True) print(exp.get_status(model))
# in interactive terminal python hello_world.py

This script could also be launched in a batch file instead of an interactive terminal. For example, for Slurm:

#!/bin/bash #SBATCH --exclusive #SBATCH --nodes=3 #SBATCH --ntasks-per-node=20 #SBATCH --time=00:10:00 python /path/to/hello_world.py
# on Slurm system sbatch run_hello_world.sh

Batch Launch Examples

SmartSim can also launch workloads in a batch directly from Python, without the need for a batch script. Users can launch groups of Model instances in a Ensemble.

The following launches 4 replicas of the the same hello_world model.

# hello_ensemble.py from smartsim import Experiment exp = Experiment("hello_world_batch", launcher="auto") # define resources for all ensemble members batch = exp.create_batch_settings(nodes=4, time="00:10:00", account="12345-Cray") batch.set_queue("premium") # define how each member should run run = exp.create_run_settings(exe="echo", exe_args="Hello World!") run.set_tasks(60) run.set_tasks_per_node(20) ensemble = exp.create_ensemble("hello_world", batch_settings=batch, run_settings=run, replicas=4) exp.start(ensemble, block=True, summary=True) print(exp.get_status(ensemble))
python hello_ensemble.py

Similar to the interactive example, this same script will run on a SLURM, PBS, or LSF system as the launcher is set to auto in the Experiment initialization. Local launching does not support batch workloads.


Infrastructure Library Applications

  • Orchestrator - In-memory data store and Machine Learning Inference (Redis + RedisAI)

Redis + RedisAI

The Orchestrator is an in-memory database that utilizes Redis and RedisAI to provide a distributed database and access to ML runtimes from Fortran, C, C++ and Python.

SmartSim provides classes that make it simple to launch the database in many configurations and optionally form a distributed database cluster. The examples below will show how to launch the database. Later in this document we will show how to use the database to perform ML inference and processing.

Local Launch

The following script launches a single database using the local launcher.

Experiment.create_database will initialize an Orchestrator instance corresponding to the specified launcher.

# run_db_local.py from smartsim import Experiment exp = Experiment("local-db", launcher="local") db = exp.create_database(port=6780, # database port interface="lo") # network interface to use # by default, SmartSim never blocks execution after the database is launched. exp.start(db) # launch models, analysis, training, inference sessions, etc # that communicate with the database using the SmartRedis clients # stop the database exp.stop(db)

Interactive Launch

The Orchestrator, like Ensemble instances, can be launched locally, in interactive allocations, or in a batch.

The following example launches a distributed (3 node) database cluster in an interactive allocation.

# get interactive allocation (Slurm) salloc -N 3 --ntasks-per-node=1 --exclusive -t 00:10:00 # get interactive allocation (PBS) qsub -l select=3:ncpus=1 -l walltime=00:10:00 -l place=scatter -I -q queue # get interactive allocation (LSF) bsub -Is -W 00:10 -nnodes 3 -P project $SHELL
# run_db.py from smartsim import Experiment # auto specified to work across launcher types exp = Experiment("db-on-slurm", launcher="auto") db_cluster = exp.create_database(db_nodes=3, db_port=6780, batch=False, interface="ipogif0") exp.start(db_cluster) print(f"Orchestrator launched on nodes: {db_cluster.hosts}") # launch models, analysis, training, inference sessions, etc # that communicate with the database using the SmartRedis clients exp.stop(db_cluster)
# in interactive terminal python run_db.py

Batch Launch

The Orchestrator can also be launched in a batch without the need for an interactive allocation. SmartSim will create the batch file, submit it to the batch system, and then wait for the database to be launched. Users can hit CTRL-C to cancel the launch if needed.

# run_db_batch.py from smartsim import Experiment exp = Experiment("batch-db-on-pbs", launcher="auto") db_cluster = exp.create_database(db_nodes=3, db_port=6780, batch=True, time="00:10:00", interface="ib0", account="12345-Cray", queue="cl40") exp.start(db_cluster) print(f"Orchestrator launched on nodes: {db_cluster.hosts}") # launch models, analysis, training, inference sessions, etc # that communicate with the database using the SmartRedis clients exp.stop(db_cluster)
python run_db_batch.py

SmartRedis

The SmartSim IL Clients (SmartRedis) are implementations of Redis clients that implement the RedisAI API with additions specific to scientific workflows.

SmartRedis clients are available in Fortran, C, C++, and Python. Users can seamlessly pull and push data from the Orchestrator from different languages.

Tensors

Tensors are the fundamental data structure for the SmartRedis clients. The Clients use the native array format of the language. For example, in Python, a tensor is a NumPy array while the C/C++ clients accept nested and contiguous arrays.

When stored in the database, all tensors are stored in the same format. Hence, any language can receive a tensor from the database no matter what supported language the array was sent from. This enables applications in different languages to communicate numerical data with each other at runtime.

For more information on the tensor data structure, see the documentation

Datasets

Datasets are collections of Tensors and associated metadata. The Dataset class is a user space object that can be created, added to, sent to, and retrieved from the Orchestrator.

For an example of how to use the Dataset class, see the Online Analysis example

For more information on the API, see the API documentation

SmartSim + SmartRedis Tutorials

SmartSim and SmartRedis were designed to work together. When launched through SmartSim, applications using the SmartRedis clients are directly connected to any Orchestrator launched in the same Experiment.

In this way, a SmartSim Experiment becomes a driver for coupled ML and Simulation workflows. The following are simple examples of how to use SmartSim and SmartRedis together.

Run the Tutorials

Each tutorial is a Jupyter notebook that can be run through the SmartSim Tutorials docker image which will run a jupyter

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多