The-Forge

The-Forge

跨平台渲染框架简化游戏引擎开发

The Forge是一个跨平台渲染框架,支持Windows、Android、iOS、macOS等平台。它提供描述符管理、多线程资源加载、着色器反射等核心图形功能,可用于构建次世代游戏引擎。框架还包含Lua脚本、动画、数学库等模块,使开发者能快速搭建游戏引擎。最新版本引入了大规模粒子系统和可见性缓冲优化等特性,持续提升性能。

The Forge跨平台渲染框架图形引擎游戏开发GPU优化Github开源项目
<img src="Screenshots/The Forge - Colour Black Landscape.png" width="108" height="46" />

The Forge is a cross-platform rendering framework supporting

  • Windows 10/11
    • with DirectX 12 / Vulkan 1.1
    • with DXR / RTX Ray Tracing API
    • DirectX 11 fallback for older Windows platforms
  • Steam Deck
    • with Vulkan 1.1
    • with VK_KHR_ray_query Ray Tracing API
  • Android Pie or higher
    • with Vulkan 1.1
    • OpenGL ES 2.0 fallback for large scale business application frameworks
  • Apple
    • iOS 14.1 / 17.0
    • iPad OS 14.1 / 17.0
    • macOS 11.0 / 14.0, with Intel and Apple silicon support
  • Quest 2 using Vulkan 1.1
  • XBOX One / XBOX One X / XBOX Series S/X *
  • PS4 / PS4 Pro *
  • PS5 *
  • Switch using Vulkan 1.1 *

*(only available for accredited developers on request)

Particularly, the graphics layer of The Forge supports cross-platform

  • Descriptor management. A description is on this Wikipage
  • Multi-threaded and asynchronous resource loading
  • Shader reflection
  • Multi-threaded command buffer generation

The Forge is used to provide the rendering layer for custom next-gen game engines. It is also used to provide building blocks to write your own game engine. It is like a "lego" set that allows you to use pieces to build a game engine quickly. The "lego" High-Level Features supported on all platforms are at the moment:

  • Resource Loader capable to load textures, buffers and geometry data asynchronously
  • Lua Scripting System - currently used for automatic testing and in 06_Playground to load models and textures and animate the camera and in several other unit tests to cycle through the options they offer during automatic testing.
  • Animation System based on Ozz Animation System
  • Consistent Math Library based on an extended version of Vectormath with NEON intrinsics for mobile platforms. It also supports now Double precision.
  • Consistent Memory Managament:
  • Input system with Gestures for Touch devices based on an extended version of gainput
  • Fast Entity Component System based on flecs
  • Cross-platform FileSystem C API, supporting disk-based files, memory streams, and files in zip archives
  • UI system based on Dear imGui extended for touch input devices
  • Shader Translator using a superset of HLSL as the shader language, called The Forge Shading Language. There is a Wiki page on The Forge Shading Language
  • Various implementations of high-end Graphics Effects as shown in the unit tests below

Please find a link and credits for all open-source packages used at the end of this readme.

<a href="https://discord.gg/hJS54bz" target="_blank"><img src="Screenshots/Discord.png" alt="Twitter" width="20" height="20" border="0" /> Join the Discord channel at https://discord.gg/hJS54bz</a>

<a href="https://twitter.com/TheForge_FX?lang=en" target="_blank"><img src="Screenshots/twitter.png" alt="Twitter" width="20" height="20" border="0" /> Join the channel at https://twitter.com/TheForge_FX?lang=en</a>

The Forge Interactive Inc. is a Khronos member

<!--- # Build Status [![Windows](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_windows.yml/badge.svg)](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_windows.yml) [![MacOS + iOS](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_macos.yml/badge.svg)](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_macos.yml) [![Linux](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_linux.yml/badge.svg)](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_linux.yml) [![Android + Meta Quest](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_android.yml/badge.svg)](https://github.com/ConfettiFX/The-Forge/actions/workflows/build_android.yml) --->

News

Release 1.58 - June 17th, 2024 Behemoth | Compute-Driven Mega Particle System | Triangle Visibility Buffer 2.0 |

Announce trailer for Behemoth

We helped Skydance Interactive to optimize Behemoth last year. Click on the image below to see the announce trailer:

Behemoth Trailer from June 2024

Compute-Based Mega Particle System

This unit test was based on some of our research into software rasterization and GPU-driven rendering. A particle system completely running in very few compute shaders with one large buffer holding most of the data. Like with all things GPU-Driven, the trick is to execute one compute shader once on one buffer to reduce read / write memory bandwidth. Although this is not new wisdom, you will be surprised how many particle systems get this still wrong ... having compute shaders for each stage of the particle life time or even worse doing most of the particle work on the CPU. This particle system was demoed last year in a few talks in September on a Samsung S22. Here are the slides:

http://www.conffx.com/WolfgangEngelParticleSystem.pptx

It is meant to be used to implement next-gen Mega Particle systems in which we simulate always 100000th or millions of particles at once instead of the few dozen ones contemporary systems simulate.

Android Samsung S22 1170x540 resolution

This screenshot shows 4 million firefly-like particles, with 10000 lights attached to them and a shadow for the directional light. Those numbers were thought to be not possible on mobile phones before. Mega Particle System Android Samsung S22

Android Samsung S23 1170x540 resolution

Same setting as above but this time also with 8 Shadows from Point Lights additionally. Mega Particle System Android Samsung S23

Android Samsung S24 1170x540 resolution

Same setting as above but this time also with 8 Shadows from Point Lights additionally. Mega Particle System Android Samsung S24

PS5 running at 4K

Mega Particle System PS5

Windows with AMD RX 6400 at 1080p

Mega Particle System PC Windows

Triangle Visibility Buffer 2.0

we have the new compute based TVB 2.0 approach now running on all platforms (on Android only S22). You can download slides from the I3D talk from

http://www.conffx.com/I3D-VisibilityBuffer2.pptx

Release 1.57 - May 8th, 2024 Visibility Buffer 2.0 Prototype | Visibility Buffer 1.0 One Draw call

Visibility Buffer Research - I3D talk

We are giving a talk about our latest Visibility Buffer research on I3D. Here is a short primer what it is about:

The original idea of the Triangle Visibility Buffer is based on an article by [[burns2013]. [schied15] and [schied16] extended what was described in the original article. Christoph Schied implemented a modern version with an early version of OpenGL (supporting MultiDrawIndirect) into The Forge rendering framework in September 2015. We ported this code to all platforms and simplified and extended it in the following years by adding a triangle filtering stage following [chajdas] and [wihlidal17] and a new way of shading. Our on-going improvements simplified the approach incrementally and the architecture started to resemble what was described in the original article by [burns2013] again, leveraging the modern tools of the newer graphics APIs. In contrast to [burns2013], the actual storage of triangles in our implementation of a Visibility Buffer happens due to the triangle removal and draw compaction step with an optimal “massaged” data set. By having removed overdraw in the Visibility Buffer and Depth Buffer, we run a shading approach that shades everything with one regular draw call. We called the shading stage Forward++ due to its resemblance to forward shading and its usage of a tiled light list for applying many lights. It was a step up from Forward+ that requires numerous draw calls. We described all this in several talks at game industry conferences, for example on GDCE 2016 [engel16] and during XFest 2018, showing considerable performance gains due to reduced memory bandwidth compared to traditional G-buffer based rendering architectures. A blog post that was updated over the years for what we call now Triangle Visibility Buffer 1.0 (TVB 1.0) can be found here [engel18].

Over the last years we extended this original idea with a Order-Independent Transparency approach (it is more efficient to sort triangle IDs in a per-pixel linked list compared to storing layers of a G-Buffer), software VRS and then we developed a Visibility Buffer approach that doesn't require draw calls to fill the depth and Visibility Buffer and one that requires much less draw calls in parallel. This release offers -what we call- an updated Triangle Visibility Buffer 1.0 (TVB 1.0) and a prototype for the Triangle Visibility Buffer 2.0 (TVB 2.0).

The changes to TVB 1.0 are evolutionary. We used to map each mesh to an indirect draw element. This reuqired the use of DrawID to map back to the per-mesh data. When working on a game engine with a very high amount of draw calls, it imposed a limitation on the number of "draws" we could do, due to having only a limited number of bits available in the VB. Additionally, instancing was implemented using a separate instanced draw for each instanced mesh. We refactored the data flow between the draws and the shade pass. There is now no reliance on DrawID and instances are handled transparently using the same unified draw. This both simplifies the flow of data and allows us to draw more "instanced" meshes. Apart from being able to use a very high-number of draw calls, the performance didn't change.

The new TVB 2.0 approach is revolutionary in a sense that it doesn't use draw calls anymore to fill the depth and visibility buffer. There are two compute shader invocations that filter triangles and eventually fill the depth and visibility buffer. Not using draw calls anymore, makes the whole code base more consistent and less convoluted -compared to TVB 1.0-.

You can find now the new Visibilty Buffer 2 approach in

The-Forge\Examples_3\Visibility_Buffer2

This is still in an early stage of development. We only support a limited number of platforms: Windows D3D12, PS4/5, XBOX, and macOS / iOS.

Sanitized initRenderer

we cleaned up the whole initRenderer code. Merged GPUConfig into GraphicsConfig and unified naming.

Metal run-time improvements

We improved the Metal Validation Support.

Art

Everything related to Art assets is now in the Art folder.

Bug fixes

Lots of fixes.

References: [burns2013] Christopher A. Burns, Warren A. Hunt, "The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading", 2013, Journal of Computer Graphics Techniques (JCGT) 2:2, Pages 55 - 69.

[schied2015] Christoph Schied, Carsten Dachsbacher, "Deferred Attribute Interpolation for Memory-Efficient Deferred Shading" , Kit Publication Website: http://cg.ivd.kit.edu/publications/2015/dais/DAIS.pdf

[schied16] Christoph Schied, Carsten Dachsbacher, "Deferred Attribute Interpolation Shading", 2016, GPU Pro 7, Pages

[chajdas] Matthaeus Chajdas, GeometryFX, 2016, AMD Developer Website http://gpuopen.com/gaming-product/geometryfx/

[wihlidal17] Graham Wihlidal, "Optimizing the Graphics Pipeline with Compute", 2017, GPU Zen 1, Pages 277--320

[engel16] Wolfgang Engel, "4K Rendering Breakthrough: The Filtered and Culled Visibility Buffer", 2016, GDC Vault: https://www.gdcvault.com/play/1023792/4K-Rendering-Breakthrough-The-Filtered

[engel18] Wolfgang Engel, "Triangle Visibility Buffer", 2018, Wolfgang Engel's Diary of a Graphics Programmer Blog http://diaryofagraphicsprogrammer.blogspot.com/2018/03/triangle-visibility-buffer.html

Release 1.56 - April 4th, 2024 I3D | Warzone Mobile | Visibility Buffer | Aura on macOS | Ephemeris on Switch | GPU breadcrumbs | Swappy in Android | Screen-space Shadows | Metal Debug Markers improved

I3D

We are sponsoring I3D again. Come by and say hi! We also will be giving a talk on the new development around Triangle Visibility Buffer.

I3D Sponsorship

Warzone Mobile launched

We work on Warzone Mobile since August 2020. The game launched on March 21, 2024.

Warzone Mobile

Warzone Mobile

Visibility Buffer

We removed CPU cluster culling and simplified the animation data usage. Now traingle filtering only takes one dispatch each frame again.

Swappy frame pacer is now vailable in Android/Vulkan

We integrated the Swappy frame pacer into the Android / Vulkan eco system.

GPUCfg system improved with more ids and less string compares

we did another pass on the GPUCfg system and now we can generate the vendor Ids and model Ids with a python script to keep the *_gpu.data list easily up to date for each platform. We removed most of the name comparisons and replaced them with the id comparisons which should speed up parsing time and is more specific.

Screen-Space Shadows in UT9

We added to the number of shadow approaches in that unit test screen-space shadows. These are complementary to regular shadow mapping and add more detail. We also fixed a number of inconsistencies with the other shadow map approaches.

PS5 - Screen-Space Shadows on Screen-Space Shadows PS5

PS5 - Screen-Space Shadows off Screen-Space Shadows PS5

Nintendo Switch Screen-Space Shadows Switch

PS4 Screen-Space Shadows PS4

GPU breadcrumbs on all platforms

Now you can have GPU crash reports on all platforms. We skipped OpenGL ES and DX11 so ...

A simple example of a crash report is this:

2024-04-04 23:44:08 [MainThread ] 09a_HybridRaytracing.cp:1685 ERR| [Breadcrumb] Simulating a GPU crash situation (RAYTRACE SHADOWS)... 2024-04-04 23:44:10 [MainThread ] 09a_HybridRaytracing.cp:2428 INFO| Last rendering step (approx): Raytrace Shadows, crashed frame: 2

We will extend the reporting a bit more over time.

Ephemeris now also runs on Switch ...

Release 1.55 - March 1st, 2024 - Ephemeris | gpu.data | Many bug fixes and smaller improvements

Ephemeris 2.0 Update

We improved Ephemeris again and support it now on more platforms. Updating some of the algorithms used and adding more features.

Ephemeris 2.0 on February 28th, 2024

Now we are supporting PC, XBOX'es, PS4/5, Android, Steamdeck, iOS (requires iPhone 11 or higher (so far not Switch)

Ephemeris on XBOX Series X Ephemeris 2.0 on February 28th, 2024

Ephemeris on

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多