audiveris

audiveris

Audiveris 将乐谱图像转换为数字符号的开源软件

Audiveris是一款开源的光学音乐识别软件,可将乐谱图像转换为数字符号。它集成了OMR引擎和编辑器,能有效识别各种质量的乐谱,支持大型乐谱处理。Audiveris提供用户友好的界面,方便检测和纠正错误。支持Windows、Linux和MacOS平台,核心数据公开,可导出MusicXML格式。Audiveris适用于处理IMSLP等网站上的真实乐谱,支持处理多达数百页的大型乐谱。它为音乐学者、编曲家和音乐爱好者提供了便捷的乐谱数字化工具,为音乐数字化提供了强大的工具支持。

AudiverisOMR光学音乐识别开源软件音乐转录Github开源项目

Logo by Katka

Audiveris - Open-source Optical Music Recognition

The goal of an OMR application is to allow the end-user to transcribe a score image into its symbolic counterpart. This opens the door to its further use by many kinds of digital processing such as playback, music edition, searching, republishing, etc.

The Audiveris application is built around the tight integration of two main components: an OMR engine and an OMR editor.

  • The OMR engine combines many techniques, depending on the type of entities to be recognized -- ad-hoc methods for lines, image morphological closing for beams, external OCR for texts, template matching for heads, neural network for all other fixed-size shapes.
    Significant progresses have been made, especially regarding poor-quality scores, but experience tells us that a 100% recognition ratio is simply out of reach in many cases.
  • The OMR editor thus comes into play to overcome engine weaknesses in convenient ways. The user can preselect processing switches to adapt the OMR engine before launching the transcription of the current score. Then the remaining mistakes can generally be quickly fixed via the manual editing of a few music symbols.

Key characteristics

  • Good recognition efficiency on real-world quality scores (as those seen on IMSLP site)
  • Effective support for large scores (with up to hundreds of pages)
  • Convenient user-oriented interface to detect and correct most OMR errors
  • Available on Windows, Linux and MacOS
  • Open source

The core of engine music information (OMR data) is fully documented and made publicly available, either directly via XML-based .omr project files or via the Java API of this software.
Audiveris comes with an integrated exporter to write (a subset of) this OMR data into MusicXML 4.0 format. In the future, other exporters are expected to build upon OMR data to support other target formats.

Stable releases

On a rather regular basis, typically every 6 to 12 months, a new release is made available on the dedicated Audiveris Releases page.

The goal of a release is to provide significant improvements, well tested and integrated, resulting in a software as easy as possible to install and use:

  • for Windows, an installer is provided on Github;
    The installer comes with pre-installed Tesseract OCR languages deu, eng, fra and ita.
    But it requires Java version 17 or higher to be available in your environment. If no suitable Java version is found at runtime, a prompt will ask you install it.
  • for Linux, a flatpak package is provided on Flathub;
    The package comes with pre-installed Tesseract OCR languages deu, eng, fra and ita.
    The needed Java environment is included in its packaging, therefore no Java installation is needed.
  • for MacOS, unfortunately, we have nothing similar yet 1 -- for now, you have to build from sources as described in the following section on Development versions.

See details in the related handbook section.

Development versions

The Audiveris project is developed on GitHub, the site you are reading.
Any one can download, build and run this software. The needed tools are git, gradle and a Java Development Kit (jdk), as described in this handbook section.

There are two main branches in Audiveris project:

  • the master branch is GitHub default branch; we use it for releases, and only for them;
    To build from this branch, you will need a jdk for Java version 17 or higher.
  • the development branch is the one where all developments continuously take place; Periodically, when a release is to be made, we merge the development branch into the master branch;
    As of this writing, the source code on development branch requires a jdk for Java version 21.

See details in the Wiki article dedicated to the chosen development workflow.

Further Information

Users and Developers are advised to read Audiveris User Handbook, and the more general Wiki set of articles.

Footnotes

  1. If you wish to give a hand, you are more than welcome!

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
�博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多