audiveris

audiveris

Audiveris 将乐谱图像转换为数字符号的开源软件

Audiveris是一款开源的光学音乐识别软件,可将乐谱图像转换为数字符号。它集成了OMR引擎和编辑器,能有效识别各种质量的乐谱,支持大型乐谱处理。Audiveris提供用户友好的界面,方便检测和纠正错误。支持Windows、Linux和MacOS平台,核心数据公开,可导出MusicXML格式。Audiveris适用于处理IMSLP等网站上的真实乐谱,支持处理多达数百页的大型乐谱。它为音乐学者、编曲家和音乐爱好者提供了便捷的乐谱数字化工具,为音乐数字化提供了强大的工具支持。

AudiverisOMR光学音乐识别开源软件音乐转录Github开源项目

Logo by Katka

Audiveris - Open-source Optical Music Recognition

The goal of an OMR application is to allow the end-user to transcribe a score image into its symbolic counterpart. This opens the door to its further use by many kinds of digital processing such as playback, music edition, searching, republishing, etc.

The Audiveris application is built around the tight integration of two main components: an OMR engine and an OMR editor.

  • The OMR engine combines many techniques, depending on the type of entities to be recognized -- ad-hoc methods for lines, image morphological closing for beams, external OCR for texts, template matching for heads, neural network for all other fixed-size shapes.
    Significant progresses have been made, especially regarding poor-quality scores, but experience tells us that a 100% recognition ratio is simply out of reach in many cases.
  • The OMR editor thus comes into play to overcome engine weaknesses in convenient ways. The user can preselect processing switches to adapt the OMR engine before launching the transcription of the current score. Then the remaining mistakes can generally be quickly fixed via the manual editing of a few music symbols.

Key characteristics

  • Good recognition efficiency on real-world quality scores (as those seen on IMSLP site)
  • Effective support for large scores (with up to hundreds of pages)
  • Convenient user-oriented interface to detect and correct most OMR errors
  • Available on Windows, Linux and MacOS
  • Open source

The core of engine music information (OMR data) is fully documented and made publicly available, either directly via XML-based .omr project files or via the Java API of this software.
Audiveris comes with an integrated exporter to write (a subset of) this OMR data into MusicXML 4.0 format. In the future, other exporters are expected to build upon OMR data to support other target formats.

Stable releases

On a rather regular basis, typically every 6 to 12 months, a new release is made available on the dedicated Audiveris Releases page.

The goal of a release is to provide significant improvements, well tested and integrated, resulting in a software as easy as possible to install and use:

  • for Windows, an installer is provided on Github;
    The installer comes with pre-installed Tesseract OCR languages deu, eng, fra and ita.
    But it requires Java version 17 or higher to be available in your environment. If no suitable Java version is found at runtime, a prompt will ask you install it.
  • for Linux, a flatpak package is provided on Flathub;
    The package comes with pre-installed Tesseract OCR languages deu, eng, fra and ita.
    The needed Java environment is included in its packaging, therefore no Java installation is needed.
  • for MacOS, unfortunately, we have nothing similar yet 1 -- for now, you have to build from sources as described in the following section on Development versions.

See details in the related handbook section.

Development versions

The Audiveris project is developed on GitHub, the site you are reading.
Any one can download, build and run this software. The needed tools are git, gradle and a Java Development Kit (jdk), as described in this handbook section.

There are two main branches in Audiveris project:

  • the master branch is GitHub default branch; we use it for releases, and only for them;
    To build from this branch, you will need a jdk for Java version 17 or higher.
  • the development branch is the one where all developments continuously take place; Periodically, when a release is to be made, we merge the development branch into the master branch;
    As of this writing, the source code on development branch requires a jdk for Java version 21.

See details in the Wiki article dedicated to the chosen development workflow.

Further Information

Users and Developers are advised to read Audiveris User Handbook, and the more general Wiki set of articles.

Footnotes

  1. If you wish to give a hand, you are more than welcome!

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多