Python codes for robotics algorithm.
This is a Python code collection of robotics algorithms.
Features:
Easy to read for understanding each algorithm's basic idea.
Widely used and practical algorithms are selected.
Minimum dependency.
See this paper for more details:
For running each sample code:
For development:
pytest (for unit tests)
pytest-xdist (for parallel unit tests)
mypy (for type check)
sphinx (for document generation)
pycodestyle (for code style check)
This README only shows some examples of this project.
If you are interested in other examples or mathematical backgrounds of each algorithm,
You can check the full documentation online: Welcome to PythonRobotics’s documentation! — PythonRobotics documentation
All animation gifs are stored here: AtsushiSakai/PythonRoboticsGifs: Animation gifs of PythonRobotics
Clone this repo.
git clone https://github.com/AtsushiSakai/PythonRobotics.git
Install the required libraries.
using conda :
conda env create -f requirements/environment.yml
using pip :
pip install -r requirements/requirements.txt
Execute python script in each directory.
Add star to this repo if you like it :smiley:.
Ref:

This is a sensor fusion localization with Particle Filter(PF).
The blue line is true trajectory, the black line is dead reckoning trajectory,
and the red line is an estimated trajectory with PF.
It is assumed that the robot can measure a distance from landmarks (RFID).
These measurements are used for PF localization.
Ref:

This is a 2D localization example with Histogram filter.
The red cross is true position, black points are RFID positions.
The blue grid shows a position probability of histogram filter.
In this simulation, x,y are unknown, yaw is known.
The filter integrates speed input and range observations from RFID for localization.
Initial position is not needed.
Ref:
This is a 2D Gaussian grid mapping example.

This is a 2D ray casting grid mapping example.

This example shows how to convert a 2D range measurement to a grid map.

This is a 2D object clustering with k-means algorithm.

This is a 2D rectangle fitting for vehicle detection.

Simultaneous Localization and Mapping(SLAM) examples
This is a 2D ICP matching example with singular value decomposition.
It can calculate a rotation matrix, and a translation vector between points and points.

Ref:
This is a feature based SLAM example using FastSLAM 1.0.
The blue line is ground truth, the black line is dead reckoning, the red line is the estimated trajectory with FastSLAM.
The red points are particles of FastSLAM.
Black points are landmarks, blue crosses are estimated landmark positions by FastSLAM.

Ref:
This is a 2D navigation sample code with Dynamic Window Approach.

This is a 2D grid based the shortest path planning with Dijkstra's algorithm.

In the animation, cyan points are searched nodes.
This is a 2D grid based the shortest path planning with A star algorithm.

In the animation, cyan points are searched nodes.
Its heuristic is 2D Euclid distance.
This is a 2D grid based the shortest path planning with D star algorithm.

The animation shows a robot finding its path avoiding an obstacle using the D* search algorithm.
Ref:
This algorithm finds the shortest path between two points while rerouting when obstacles are discovered. It has been implemented here for a 2D grid.

The animation shows a robot finding its path and rerouting to avoid obstacles as they are discovered using the D* Lite search algorithm.
Refs:
This is a 2D grid based path planning with Potential Field algorithm.

In the animation, the blue heat map shows potential value on each grid.
Ref:
This is a 2D grid based coverage path planning simulation.

This script is a path planning code with state lattice planning.
This code uses the model predictive trajectory generator to solve boundary problem.
Ref:



This PRM planner uses Dijkstra method for graph search.
In the animation, blue points are sampled points,
Cyan crosses means searched points with Dijkstra method,
The red line is the final path of PRM.
Ref:

This is a path planning code with RRT*
Black circles are obstacles, green line is a searched tree, red crosses are start and goal positions.
Ref:

Path planning for a car robot with RRT* and reeds shepp path planner.
This is a path planning simulation with LQR-RRT*.
A double integrator motion model is used for LQR local


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文 ,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自 主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI 助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号