everything-ai

everything-ai

多功能AI聊天机器人助手支持本地部署

everything-ai是一个开源项目,提供本地部署的AI聊天机器人助手。该项目支持文本生成、摘要、图像处理等多种任务,集成了先进的AI模型和检索技术。系统支持多语言处理,采用Docker部署,便于搭建个性化AI助手。

everything-aiAI助手Docker多模态开源项目Github
<h1 align="center">everything-ai</h1> <h2 align="center">Your fully proficient, AI-powered and local chatbot assistant🤖</h2> <div align="center"> <img src="https://img.shields.io/github/languages/top/AstraBert/everything-ai" alt="GitHub top language"> <img src="https://img.shields.io/github/commit-activity/t/AstraBert/everything-ai" alt="GitHub commit activity"> <img src="https://img.shields.io/badge/everything_ai-stable-green" alt="Static Badge"> <img src="https://img.shields.io/badge/Release-v4.2.0-purple" alt="Static Badge"> <img src="https://img.shields.io/docker/image-size/astrabert/everything-ai " alt="Docker image size"> <img src="https://img.shields.io/badge/Supported_platforms-Windows/macOS-brown" alt="Static Badge"> <div> <a href="https://huggingface.co/spaces/as-cle-bert/everything-rag"><img src="./imgs/everything-ai.drawio.png" alt="Flowchart" align="center"></a> <p><i>Flowchart for everything-ai</i></p> </div> </div>

Quickstart

1. Clone this repository

git clone https://github.com/AstraBert/everything-ai.git cd everything-ai

2. Set your .env file

Modify:

  • VOLUME variable in the .env file so that you can mount your local file system into Docker container.
  • MODELS_PATH variable in the .env file so that you can tell llama.cpp where you stored the GGUF models you downloaded.
  • MODEL variable in the .env file so that you can tell llama.cpp what model to use (use the actual name of the gguf file, and do not forget the .gguf extension!)
  • MAX_TOKENS variable in the .env file so that you can tell llama.cpp how many new tokens it can generate as output.

An example of a .env file could be:

VOLUME="c:/Users/User/:/User/" MODELS_PATH="c:/Users/User/.cache/llama.cpp/" MODEL="stories260K.gguf" MAX_TOKENS="512"

This means that now everything that is under "c:/Users/User/" on your local machine is under "/User/" in your Docker container, that llama.cpp knows where to look for models and what model to look for, along with the maximum new tokens for its output.

3. Pull the necessary images

docker pull astrabert/everything-ai:latest docker pull qdrant/qdrant:latest docker pull ghcr.io/ggerganov/llama.cpp:server

4. Run the multi-container app

docker compose up

5. Go to localhost:8670 and choose your assistant

You will see something like this:

<div align="center"> <img src="./imgs/select_and_run.png" alt="Task choice interface"> </div>

Choose the task among:

  • retrieval-text-generation: use qdrant backend to build a retrieval-friendly knowledge base, which you can query and tune the response of your model on. You have to pass either a pdf/a bunch of pdfs specified as comma-separated paths or a directory where all the pdfs of interest are stored (DO NOT provide both); you can also specify the language in which the PDF is written, using ISO nomenclature - MULTILINGUAL
  • agnostic-text-generation: ChatGPT-like text generation (no retrieval architecture), but supports every text-generation model on HF Hub (as long as your hardware supports it!) - MULTILINGUAL
  • text-summarization: summarize text and pdfs, supports every text-summarization model on HF Hub - ENGLISH ONLY
  • image-generation: stable diffusion, supports every text-to-image model on HF Hub - MULTILINGUAL
  • image-generation-pollinations: stable diffusion, use Pollinations AI API; if you choose 'image-generation-pollinations', you do not need to specify anything else apart from the task - MULTILINGUAL
  • image-classification: classify an image, supports every image-classification model on HF Hub - ENGLISH ONLY
  • image-to-text: describe an image, supports every image-to-text model on HF Hub - ENGLISH ONLY
  • audio-classification: classify audio files or microphone recordings, supports audio-classification models on HF hub
  • speech-recognition: transcribe audio files or microphone recordings, supports automatic-speech-recognition models on HF hub.
  • video-generation: generate video upon text prompt, supports text-to-video models on HF hub - ENGLISH ONLY
  • protein-folding: get the 3D structure of a protein from its amino-acid sequence, using ESM-2 backbone model - GPU ONLY
  • autotrain: fine-tune a model on a specific downstream task with autotrain-advanced, just by specifying you HF username, HF writing token and the path to a yaml config file for the training
  • spaces-api-supabase: use HF Spaces API in combination with Supabase PostgreSQL databases in order to unleash more powerful LLMs and larger RAG-oriented vector databases - MULTILINGUAL
  • llama.cpp-and-qdrant: same as retrieval-text-generation, but uses llama.cpp as inference engine, so you MUST NOT specify a model - MULTILINGUAL
  • build-your-llm: Build a customizable chat LLM combining a Qdrant database with your PDFs and the power of Anthropic, OpenAI, Cohere or Groq models: you just need an API key! To build the Qdrant database, have to pass either a pdf/a bunch of pdfs specified as comma-separated paths or a directory where all the pdfs of interest are stored (DO NOT provide both); you can also specify the language in which the PDF is written, using ISO nomenclature - MULTILINGUAL, LANGFUSE INTEGRATION
  • simply-chatting: Build a customizable chat LLM with the power of Anthropic, OpenAI, Cohere or Groq models (no RAG pipeline): you just need an API key! - MULTILINGUAL, LANGFUSE INTEGRATION
  • fal-img2img: Use fal.ai ComfyUI API to generate images starting from yur PNG and JPEG images: you just need an API key! You can aklso customize the generation working with prompts and seeds - ENGLISH ONLY
  • image-retrieval-search: search an image database uploading a folder as database input. The folder should have the following structure:
./
├── test/
|   ├── label1/
|   └── label2/
└── train/
    ├── label1/
    └── label2/

You can query the database starting from your own pictures.

6. Go to localhost:7860 and start using your assistant

Once everything is ready, you can head over to localhost:7860 and start using your assistant:

<div align="center"> <img src="./imgs/chatbot.png" alt="Chat interface"> </div>

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多