everything-ai

everything-ai

多功能AI聊天机器人助手支持本地部署

everything-ai是一个开源项目,提供本地部署的AI聊天机器人助手。该项目支持文本生成、摘要、图像处理等多种任务,集成了先进的AI模型和检索技术。系统支持多语言处理,采用Docker部署,便于搭建个性化AI助手。

everything-aiAI助手Docker多模态开源项目Github
<h1 align="center">everything-ai</h1> <h2 align="center">Your fully proficient, AI-powered and local chatbot assistant🤖</h2> <div align="center"> <img src="https://img.shields.io/github/languages/top/AstraBert/everything-ai" alt="GitHub top language"> <img src="https://img.shields.io/github/commit-activity/t/AstraBert/everything-ai" alt="GitHub commit activity"> <img src="https://img.shields.io/badge/everything_ai-stable-green" alt="Static Badge"> <img src="https://img.shields.io/badge/Release-v4.2.0-purple" alt="Static Badge"> <img src="https://img.shields.io/docker/image-size/astrabert/everything-ai " alt="Docker image size"> <img src="https://img.shields.io/badge/Supported_platforms-Windows/macOS-brown" alt="Static Badge"> <div> <a href="https://huggingface.co/spaces/as-cle-bert/everything-rag"><img src="./imgs/everything-ai.drawio.png" alt="Flowchart" align="center"></a> <p><i>Flowchart for everything-ai</i></p> </div> </div>

Quickstart

1. Clone this repository

git clone https://github.com/AstraBert/everything-ai.git cd everything-ai

2. Set your .env file

Modify:

  • VOLUME variable in the .env file so that you can mount your local file system into Docker container.
  • MODELS_PATH variable in the .env file so that you can tell llama.cpp where you stored the GGUF models you downloaded.
  • MODEL variable in the .env file so that you can tell llama.cpp what model to use (use the actual name of the gguf file, and do not forget the .gguf extension!)
  • MAX_TOKENS variable in the .env file so that you can tell llama.cpp how many new tokens it can generate as output.

An example of a .env file could be:

VOLUME="c:/Users/User/:/User/" MODELS_PATH="c:/Users/User/.cache/llama.cpp/" MODEL="stories260K.gguf" MAX_TOKENS="512"

This means that now everything that is under "c:/Users/User/" on your local machine is under "/User/" in your Docker container, that llama.cpp knows where to look for models and what model to look for, along with the maximum new tokens for its output.

3. Pull the necessary images

docker pull astrabert/everything-ai:latest docker pull qdrant/qdrant:latest docker pull ghcr.io/ggerganov/llama.cpp:server

4. Run the multi-container app

docker compose up

5. Go to localhost:8670 and choose your assistant

You will see something like this:

<div align="center"> <img src="./imgs/select_and_run.png" alt="Task choice interface"> </div>

Choose the task among:

  • retrieval-text-generation: use qdrant backend to build a retrieval-friendly knowledge base, which you can query and tune the response of your model on. You have to pass either a pdf/a bunch of pdfs specified as comma-separated paths or a directory where all the pdfs of interest are stored (DO NOT provide both); you can also specify the language in which the PDF is written, using ISO nomenclature - MULTILINGUAL
  • agnostic-text-generation: ChatGPT-like text generation (no retrieval architecture), but supports every text-generation model on HF Hub (as long as your hardware supports it!) - MULTILINGUAL
  • text-summarization: summarize text and pdfs, supports every text-summarization model on HF Hub - ENGLISH ONLY
  • image-generation: stable diffusion, supports every text-to-image model on HF Hub - MULTILINGUAL
  • image-generation-pollinations: stable diffusion, use Pollinations AI API; if you choose 'image-generation-pollinations', you do not need to specify anything else apart from the task - MULTILINGUAL
  • image-classification: classify an image, supports every image-classification model on HF Hub - ENGLISH ONLY
  • image-to-text: describe an image, supports every image-to-text model on HF Hub - ENGLISH ONLY
  • audio-classification: classify audio files or microphone recordings, supports audio-classification models on HF hub
  • speech-recognition: transcribe audio files or microphone recordings, supports automatic-speech-recognition models on HF hub.
  • video-generation: generate video upon text prompt, supports text-to-video models on HF hub - ENGLISH ONLY
  • protein-folding: get the 3D structure of a protein from its amino-acid sequence, using ESM-2 backbone model - GPU ONLY
  • autotrain: fine-tune a model on a specific downstream task with autotrain-advanced, just by specifying you HF username, HF writing token and the path to a yaml config file for the training
  • spaces-api-supabase: use HF Spaces API in combination with Supabase PostgreSQL databases in order to unleash more powerful LLMs and larger RAG-oriented vector databases - MULTILINGUAL
  • llama.cpp-and-qdrant: same as retrieval-text-generation, but uses llama.cpp as inference engine, so you MUST NOT specify a model - MULTILINGUAL
  • build-your-llm: Build a customizable chat LLM combining a Qdrant database with your PDFs and the power of Anthropic, OpenAI, Cohere or Groq models: you just need an API key! To build the Qdrant database, have to pass either a pdf/a bunch of pdfs specified as comma-separated paths or a directory where all the pdfs of interest are stored (DO NOT provide both); you can also specify the language in which the PDF is written, using ISO nomenclature - MULTILINGUAL, LANGFUSE INTEGRATION
  • simply-chatting: Build a customizable chat LLM with the power of Anthropic, OpenAI, Cohere or Groq models (no RAG pipeline): you just need an API key! - MULTILINGUAL, LANGFUSE INTEGRATION
  • fal-img2img: Use fal.ai ComfyUI API to generate images starting from yur PNG and JPEG images: you just need an API key! You can aklso customize the generation working with prompts and seeds - ENGLISH ONLY
  • image-retrieval-search: search an image database uploading a folder as database input. The folder should have the following structure:
./
├── test/
|   ├── label1/
|   └── label2/
└── train/
    ├── label1/
    └── label2/

You can query the database starting from your own pictures.

6. Go to localhost:7860 and start using your assistant

Once everything is ready, you can head over to localhost:7860 and start using your assistant:

<div align="center"> <img src="./imgs/chatbot.png" alt="Chat interface"> </div>

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多