ranx ([raŋks]) is a library of fast ranking evaluation metrics implemented in Python, leveraging Numba for high-speed vector operations and automatic parallelization. It offers a user-friendly interface to evaluate and compare Information Retrieval and Recommender Systems. ranx allows you to perform statistical tests and export LaTeX tables for your scientific publications. Moreover, ranx provides several fusion algorithms and normalization strategies, and an automatic fusion optimization functionality. ranx also have a companion repository of pre-computed runs to facilitated model comparisons called ranxhub. On ranxhub, you can download and share pre-computed runs for Information Retrieval datasets, such as MSMARCO Passage Ranking. ranx was featured in ECIR 2022, CIKM 2022, and SIGIR 2023.
If you use ranx to evaluate results or conducting experiments involving fusion for your scientific publication, please consider citing it: evaluation bibtex, fusion bibtex, ranxhub bibtex.
NB: ranx is not suited for evaluating classifiers. Please, refer to the FAQ for further details.
For a quick overview, follow the Usage section.
For a in-depth overview, follow the Examples section.
The metrics have been tested against TREC Eval for correctness.
Please, refer to Smucker et al., Carterette, and Fuhr for additional information on statistical tests for Information Retrieval.
You can load qrels from ir-datasets as simply as:
qrels = Qrels.from_ir_datasets("msmarco-document/dev")
A full list of the available qrels is provided here.
You can load runs from ranxhub as simply as:
run = Run.from_ranxhub("run-id")
A full list of the available runs is provided here.
Please, refer to the documentation for further details.
Please, refer to the documentation for further details.
python>=3.8
As of v.0.3.5, ranx requires python>=3.8.
pip install ranx
from ranx import Qrels, Run qrels_dict = { "q_1": { "d_12": 5, "d_25": 3 }, "q_2": { "d_11": 6, "d_22": 1 } } run_dict = { "q_1": { "d_12": 0.9, "d_23": 0.8, "d_25": 0.7, "d_36": 0.6, "d_32": 0.5, "d_35": 0.4 }, "q_2": { "d_12": 0.9, "d_11": 0.8, "d_25": 0.7, "d_36": 0.6, "d_22": 0.5, "d_35": 0.4 } } qrels = Qrels(qrels_dict) run = Run(run_dict)
from ranx import evaluate # Compute score for a single metric evaluate(qrels, run, "ndcg@5") >>> 0.7861 # Compute scores for multiple metrics at once evaluate(qrels, run, ["map@5", "mrr"]) >>> {"map@5": 0.6416, "mrr": 0.75}
from ranx import compare # Compare different runs and perform Two-sided Paired Student's t-Test report = compare( qrels=qrels, runs=[run_1, run_2, run_3, run_4, run_5], metrics=["map@100", "mrr@100", "ndcg@10"], max_p=0.01 # P-value threshold )
Output:
print(report)
# Model MAP@100 MRR@100 NDCG@10
--- ------- -------- -------- ---------
a model_1 0.320ᵇ 0.320ᵇ 0.368ᵇᶜ
b model_2 0.233 0.234 0.239
c model_3 0.308ᵇ 0.309ᵇ 0.330ᵇ
d model_4 0.366ᵃᵇᶜ 0.367ᵃᵇᶜ 0.408ᵃᵇᶜ
e model_5 0.405ᵃᵇᶜᵈ 0.406ᵃᵇᶜᵈ 0.451ᵃᵇᶜᵈ
from ranx import fuse, optimize_fusion best_params = optimize_fusion( qrels=train_qrels, runs=[train_run_1, train_run_2, train_run_3], norm="min-max", # The norm. to apply before fusion method="wsum", # The fusion algorithm to use (Weighted Sum) metric="ndcg@100", # The metric to maximize ) combined_test_run = fuse( runs=[test_run_1, test_run_2, test_run_3], norm="min-max", method="wsum", params=best_params, )
| Name | Link |
|---|---|
| Overview | |
| Qrels and Run | |
| Evaluation | |
| Comparison and Report | |
| Fusion | |
| Plot | |
| Share your runs with ranxhub |
Browse the documentation for more details and examples.
If you use ranx to evaluate results for your scientific publication, please consider citing our ECIR 2022 paper:
<details> <summary>BibTeX</summary>@inproceedings{ranx, author = {Elias Bassani}, title = {ranx:


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式 创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、 并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号