Reinforcement-Learning-Papers

Reinforcement-Learning-Papers

强化学习顶会论文精选资源库

这是一个汇集AAAI、IJCAI、NeurIPS等顶级会议强化学习论文的资源库。涵盖多智能体、元学习、分层学习等前沿方向,提供PDF和代码链接。项目定期更新,为研究人员追踪领域发展、探索新算法提供便捷参考。

强化学习多智能体论文集研究趋势算法Github开源项目
<p align="center"> <img src="overview.jpg" alt="Reinforcement Learning!" style="width=80%"> </p>

Welcome to our GitHub repository! This repository is dedicated to curating significant research papers in the field of Reinforcement Learning (RL) that have been accepted at top academic conferences such as AAAI, IJCAI, NeurIPS, ICML, ICLR, ICRA, AAMAS and more. We provide you with a convenient resource hub to help you stay updated on the latest developments in reinforcement learning, delve into research trends, and explore cutting-edge algorithms and methods.

<p align='center'> <img src="https://img.shields.io/github/stars/Allenpandas/Reinforcement-Learning-Papers.svg"> <img src="https://img.shields.io/github/forks/Allenpandas/Reinforcement-Learning-Papers.svg"> <a href="README.zh-CN.md"><img src="https://img.shields.io/badge/文档-中文版-blue.svg" alt="CN doc"></a> <a href="README.md"><img src="https://img.shields.io/badge/document-English-blue.svg" alt="EN doc"></a> <img src="https://img.shields.io/github/repo-size/Allenpandas/Reinforcement-Learning-Papers.svg"> <img src="https://img.shields.io/github/issues/Allenpandas/Reinforcement-Learning-Papers.svg"> <img src="https://img.shields.io/github/issues-pr/Allenpandas/Reinforcement-Learning-Papers.svg"> </p>

News

  • 2023/11/12: I added the related repository.
  • 2023/8/19: I added papers accepted at AAMAS'23, IJCAI'23, ICRA'23, ICML'23,ICLR'23, AAAI'23, NeurIPS'22 etc
  • 2023/1/6: I created the repository.

Contributing

<p align="center"> <img src="./we-need-you.jpeg" alt="We Need You!"> </p>

Markdown format:

- **Paper Name**.
  [[pdf](link)]
  [[code](link)]
  - Author 1, Author 2, and Author 3. *conference, year*.

Please help to contribute this list by contacting me or add pull request.

For any questions, feel free to contact me 📮.

Table of Contents

1_Multi-Agent Reinforcement Learning

  • Online Tuning for Offline Decentralized Multi-Agent Reinforcement Learning. [pdf]
    • Jiechuan Jiang, Zongqing Lu. AAAI 2023.
  • Reward Poisoning Attacks on Offline Multi-Agent Reinforcement Learning. [pdf]
    • Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie. AAAI 2023.
  • Models as Agents: Optimizing Multi-Step Predictions of Interactive Local Models in Model-Based Multi-Agent Reinforcement Learning. [pdf]
    • Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, Hankz Hankui Zhuo. AAAI 2023.
  • DeCOM: Decomposed Policy for Constrained Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Zhaoxing Yang, Haiming Jin, Rong Ding, Haoyi You, Guiyun Fan, Xinbing Wang, Chenghu Zhou. AAAI 2023.
  • Quantum Multi-Agent Meta Reinforcement Learning. [pdf]
    • Won Joon Yun, Jihong Park, Joongheon Kim. AAAI 2023.
  • Learning Explicit Credit Assignment for Cooperative Multi-Agent Reinforcement Learning via Polarization Policy Gradient. [pdf]
    • Wubing Chen, Wenbin Li, Xiao Liu, Shangdong Yang, Yang Gao. AAAI 2023.
  • Learning from Good Trajectories in Offline Multi-Agent Reinforcement Learning. [pdf]
    • Qi Tian, Kun Kuang, Furui Liu, Baoxiang Wang. AAAI 2023.
  • DM²: Decentralized Multi-Agent Reinforcement Learning via Distribution Matching. [pdf]
    • Caroline Wang, Ishan Durugkar, Elad Liebman, Peter Stone. AAAI 2023.
  • Consensus Learning for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Zhiwei Xu, Bin Zhang, Dapeng Li, Zeren Zhang, Guangchong Zhou, Hao Chen, Guoliang Fan. AAAI 2023.
  • HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with Dual Coordination Mechanism. [pdf]
    • Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, Guoliang Fan. AAAI 2023.
  • DACOM: Learning Delay-Aware Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Tingting Yuan, Hwei-Ming Chung, Jie Yuan, Xiaoming Fu. AAAI 2023.
  • Certified Policy Smoothing for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Ronghui Mu, Wenjie Ruan, Leandro Soriano Marcolino, Gaojie Jin, Qiang Ni. AAAI 2023.
  • Enhancing Smart, Sustainable Mobility with Game Theory and Multi-Agent Reinforcement Learning With Applications to Ridesharing. [pdf]
    • Lucia Cipolina-Kun. AAAI 2023.
  • Tackling Safe and Efficient Multi-Agent Reinforcement Learning via Dynamic Shielding (Student Abstract). [pdf]
    • Wenli Xiao, Yiwei Lyu, John M. Dolan. AAAI 2023.
  • Multi-Agent Reinforcement Learning for Adaptive Mesh Refinement. [pdf]
    • Jiachen Yang, Ketan Mittal, Tarik Dzanic, Socratis Petrides, Brendan Keith, Brenden K. Petersen, Daniel M. Faissol, Robert W. Anderson. AAMAS 2023.
  • Adaptive Learning Rates for Multi-Agent Reinforcement Learning. [pdf]
    • Jiechuan Jiang, Zongqing Lu. AAMAS 2023.
  • Adaptive Value Decomposition with Greedy Marginal Contribution Computation for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Shanqi Liu, Yujing Hu, Runze Wu, Dong Xing, Yu Xiong, Changjie Fan, Kun Kuang, Yong Liu. AAMAS 2023.
  • A Variational Approach to Mutual Information-Based Coordination for Multi-Agent Reinforcement Learning. [pdf]
    • Woojun Kim, Whiyoung Jung, Myungsik Cho, Youngchul Sung. AAMAS 2023.
  • Mediated Multi-Agent Reinforcement Learning. [pdf]
    • Dmitry Ivanov, Ilya Zisman, Kirill Chernyshev. AAMAS 2023.
  • EXPODE: EXploiting POlicy Discrepancy for Efficient Exploration in Multi-agent Reinforcement Learning. [pdf]
    • Yucong Zhang, Chao Yu. AAMAS 2023.
  • AC2C: Adaptively Controlled Two-Hop Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Xuefeng Wang, Xinran Li, Jiawei Shao, Jun Zhang. AAMAS 2023.
  • Learning Structured Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Junjie Sheng, Xiangfeng Wang, Bo Jin, Wenhao Li, Jun Wang, Junchi Yan, Tsung-Hui Chang, Hongyuan Zha. AAMAS 2023.
  • Model-based Sparse Communication in Multi-agent Reinforcement Learning. [pdf]
    • Shuai Han, Mehdi Dastani, Shihan Wang. AAMAS 2023.
  • Sequential Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing. AAMAS 2023.
  • Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-Robot Cooperative Exploration. [pdf]
    • Chao Yu, Xinyi Yang, Jiaxuan Gao, Jiayu Chen, Yunfei Li, Jijia Liu, Yunfei Xiang, Ruixin Huang, Huazhong Yang, Yi Wu, Yu Wang. AAMAS 2023.
  • Learning from Multiple Independent Advisors in Multi-agent Reinforcement Learning. [pdf]
    • Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, Mark Crowley. AAMAS 2023.
  • CraftEnv: A Flexible Collective Robotic Construction Environment for Multi-Agent Reinforcement Learning. [pdf]
    • Rui Zhao, Xu Liu, Yizheng Zhang, Minghao Li, Cheng Zhou, Shuai Li, Lei Han. AAMAS 2023.
  • Multi-Agent Reinforcement Learning with Safety Layer for Active Voltage Control. [pdf]
    • Yufeng Shi, Mingxiao Feng, Minrui Wang, Wengang Zhou, Houqiang Li. AAMAS 2023.
  • Model-based Dynamic Shielding for Safe and Efficient Multi-agent Reinforcement Learning. [pdf]
    • Wenli Xiao, Yiwei Lyu, John M. Dolan. AAMAS 2023.
  • Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Jihwan Oh, Joonkee Kim, Minchan Jeong, Se-Young Yun. AAMAS 2023.
  • Counterexample-Guided Policy Refinement in Multi-Agent Reinforcement Learning. [pdf]
    • Briti Gangopadhyay, Pallab Dasgupta, Soumyajit Dey. AAMAS 2023.
  • Prioritized Tasks Mining for Multi-Task Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Yang Yu, Qiyue Yin, Junge Zhang, Kaiqi Huang. AAMAS 2023.
  • TransfQMix: Transformers for Leveraging the Graph Structure of Multi-Agent Reinforcement Learning Problems. [pdf]
    • Matteo Gallici, Mario Martin, Ivan Masmitja. AAMAS 2023.
  • Parameter Sharing with Network Pruning for Scalable Multi-Agent Deep Reinforcement Learning. [pdf]
    • Woojun Kim, Youngchul Sung. AAMAS 2023.
  • Towards Explaining Sequences of Actions in Multi-Agent Deep Reinforcement Learning Models. [pdf]
    • Khaing Phyo Wai, Minghong Geng, Budhitama Subagdja, Shubham Pateria, Ah-Hwee Tan. AAMAS 2023.
  • Multi-Agent Deep Reinforcement Learning for High-Frequency Multi-Market Making. [pdf]
    • Pankaj Kumar. AAMAS 2023.
  • Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning. [pdf]
    • Chen Yang, Guangkai Yang, Junge Zhang. AAMAS 2023.
  • Off-Beat Multi-Agent Reinforcement Learning. [pdf]
    • Wei Qiu, Weixun Wang, Rundong Wang, Bo An, Yujing Hu, Svetlana Obraztsova, Zinovi Rabinovich, Jianye Hao, Yingfeng Chen, Changjie Fan. AAMAS 2023.
  • Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning. [pdf]
    • Matthias Gerstgrasser, Tom Danino, Sarah Keren. AAMAS 2023.
  • Off-the-Grid MARL: Datasets and Baselines for Offline Multi-Agent Reinforcement Learning. [pdf]
    • Claude Formanek, Asad Jeewa, Jonathan P. Shock, Arnu Pretorius. AAMAS 2023.
  • Grey-box Adversarial Attack on Communication in Multi-agent Reinforcement Learning. [pdf]
    • Xiao Ma, Wu-Jun Li. AAMAS 2023.
  • Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response of Residential Loads. [pdf]
    • Vincent Mai, Philippe Maisonneuve, Tianyu Zhang, Hadi Nekoei, Liam Paull, Antoine Lesage-Landry. AAMAS 2023.
  • Learning to Self-Reconfigure for Freeform Modular Robots via Altruism Multi-Agent Reinforcement Learning. [pdf]
    • Lei Wu, Bin Guo, Qiuyun Zhang, Zhuo Sun, Jieyi Zhang, Zhiwen Yu. AAMAS 2023.
  • Multi-Agent Path Finding via Reinforcement Learning with Hybrid Reward. [pdf]
    • Cheng Zhao, Liansheng Zhuang,

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多