AdvancedLiterateMachinery

AdvancedLiterateMachinery

赋予机器高级智能的先进读写系统

AdvancedLiterateMachinery是一个致力于构建高级智能系统的开源项目,旨在赋予机器阅读、思考和创造能力。项目由阿里巴巴集团同义实验室的读光OCR团队维护,涵盖文本识别、文档理解和信息提取等领域。目前,项目专注于开发从图像和文档中读取信息的技术,包含OmniParser、GEM和DocXChain等创新模型,推动人工智能技术的发展。

ALMOCR文档理解场景文字识别视觉语言预训练Github开源项目

Advanced Literate Machinery

Introduction

The ultimate goal of our research is to build a system that has high-level intelligence, i.e., possessing the abilities to read, think and create, so advanced that it could even surpass human intelligence one day in the future. We name this kind of systems Advanced Literate Machinery (ALM).

To start with, we currently focus on teaching machines to read from images and documents. In years to come, we will explore the possibilities of endowing machines with the intellectual capabilities of thinking and creating, catching up with and surpassing GPT-4 and GPT-4V.

This project is maintained by the 读光 OCR Team (读光-Du Guang means “Reading The Light”) in the Tongyi Lab, Alibaba Group.

Logo

Visit our 读光-Du Guang Portal and DocMaster to experience online demos for OCR and Document Understanding.

Recent Updates

2024.4 Release

  • OmniParser (OmniParser: A Unified Framework for Text Spotting, Key Information Extraction and Table Recognition, CVPR 2024. paper): We propose a universal model for parsing visually-situated text across diverse scenarios, called OmniParser, which can simultaneously handle three typical visually-situated text parsing tasks: text spotting, key information extraction, and table recognition. In OmniParser, all tasks share the unified encoder-decoder architecture, the unified objective: point-conditioned text generation, and the unified input & output representation: prompt & structured sequences.

2024.3 Release

  • GEM (GEM: Gestalt Enhanced Markup Language Model for Web Understanding via Render Tree, EMNLP 2023. paper): Web pages serve as crucial carriers for humans to acquire and perceive information. Inspired by the Gestalt psychological theory, we propose an innovative Gestalt Enhanced Markup Language Model (GEM for short) for hosting heterogeneous visual information from render trees of web pages, leading to excellent performances on tasks such as web question answering and web information extraction.

2023.9 Release

  • DocXChain (DocXChain: A Powerful Open-Source Toolchain for Document Parsing and Beyond, arXiv 2023. report): To promote the level of digitization and structurization for documents, we develop and release an open-source toolchain, called DocXChain, for precise and detailed document parsing. Currently, basic capabilities, including text detection, text recognition, table structure recognition, and layout analysis, are provided. Also, typical pipelines, i.e., general text reading, table parsing, and document structurization, are built to support more complicated applications related to documents. Most of the algorithmic models are from ModelScope. Formula recognition (using models from RapidLatexOCR) and whole PDF conversion (PDF to JSON format) are now supported.
  • LISTER (LISTER: Neighbor Decoding for Length-Insensitive Scene Text Recognition, ICCV 2023. paper): We propose a method called Length-Insensitive Scene TExt Recognizer (LISTER), which remedies the limitation regarding the robustness to various text lengths. Specifically, a Neighbor Decoder is proposed to obtain accurate character attention maps with the assistance of a novel neighbor matrix regardless of the text lengths. Besides, a Feature Enhancement Module is devised to model the long-range dependency with low computation cost, which is able to perform iterations with the neighbor decoder to enhance the feature map progressively..
  • VGT (Vision Grid Transformer for Document Layout Analysis, ICCV 2023. paper): To fully leverage multi-modal information and exploit pre-training techniques to learn better representation for document layout analysis (DLA), we present VGT, a two-stream Vision Grid Transformer, in which Grid Transformer (GiT) is proposed and pre-trained for 2D token-level and segment-level semantic understanding. In addition, a new benchmark for assessing document layout analysis algorithms, called D^4LA, is curated and released.
  • VLPT-STD (Vision-Language Pre-Training for Boosting Scene Text Detectors, CVPR 2022. paper): We adapt vision-language joint learning for scene text detection, a task that intrinsically involves cross-modal interaction between the two modalities: vision and language. The pre-trained model is able to produce more informative representations with richer semantics, which could readily benefit existing scene text detectors (such as EAST and DB) in the down-stream text detection task.

2023.6 Release

  • LiteWeightOCR (Building A Mobile Text Recognizer via Truncated SVD-based Knowledge Distillation-Guided NAS, BMVC 2023. paper): To make OCR models deployable on mobile devices while keeping high accuracy, we propose a light-weight text recognizer that integrates Truncated Singular Value Decomposition (TSVD)-based Knowledge Distillation (KD) into the Neural Architecture Search (NAS) process.

2023.4 Release

  • GeoLayoutLM (GeoLayoutLM: Geometric Pre-training for Visual Information Extraction, CVPR 2023. paper): We propose a multi-modal framework, named GeoLayoutLM, for Visual Information Extraction (VIE). In contrast to previous methods for document pre-training, which usually learn geometric representation in an implicit way, GeoLayoutLM explicitly models the geometric relations of entities in documents.

2023.2 Release

  • LORE-TSR (LORE: Logical Location Regression Network for Table Structure Recognition, AAAI 2022. paper): We model Table Structure Recognition (TSR) as a logical location regression problem and propose a new algorithm called LORE, standing for LOgical location REgression network, which for the first time combines logical location regression together with spatial location regression of table cells.

2022.9 Release

  • MGP-STR (Multi-Granularity Prediction for Scene Text Recognition, ECCV 2022. paper): Based on ViT and a tailored Adaptive Addressing and Aggregation module, we explore an implicit way for incorporating linguistic knowledge by introducing subword representations to facilitate multi-granularity prediction and fusion in scene text recognition.
  • LevOCR (Levenshtein OCR, ECCV 2022. paper): Inspired by Levenshtein Transformer, we cast the problem of scene text recognition as an iterative sequence refinement process, which allows for parallel decoding, dynamic length change and good interpretability.

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多