DiffGesture

DiffGesture

音频驱动协同语音手势生成的扩散模型框架

DiffGesture是一个基于扩散模型的框架,旨在生成与音频同步的协同语音手势。该框架通过扩散条件生成过程和音频-手势变换器捕捉跨模态关联,并使用手势稳定器和无分类器引导保持时间一致性。DiffGesture生成的手势具有良好的模式覆盖和音频相关性,在多个数据集上展现出优秀性能。

AI动画语音驱动手势生成扩散模型跨模态学习计算机视觉Github开源项目

Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation (CVPR 2023)

This is the official code for Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation.

Abstract

Animating virtual avatars to make co-speech gestures facilitates various applications in human-machine interaction. The existing methods mainly rely on generative adversarial networks (GANs), which typically suffer from notorious mode collapse and unstable training, thus making it difficult to learn accurate audio-gesture joint distributions. In this work, we propose a novel diffusion-based framework, named Diffusion Co-Speech Gesture (DiffGesture), to effectively capture the cross-modal audio-to-gesture associations and preserve temporal coherence for high-fidelity audio-driven co-speech gesture generation. Specifically, we first establish the diffusion-conditional generation process on clips of skeleton sequences and audio to enable the whole framework. Then, a novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency. Moreover, to eliminate temporal inconsistency, we propose an effective Diffusion Gesture Stabilizer with an annealed noise sampling strategy. Benefiting from the architectural advantages of diffusion models, we further incorporate implicit classifier-free guidance to trade off between diversity and gesture quality. Extensive experiments demonstrate that DiffGesture achieves state-of-the-art performance, which renders coherent gestures with better mode coverage and stronger audio correlations.

<img src='./misc/overview.jpg' width=800>

Installation & Preparation

  1. Clone this repository and install packages:

    git clone https://github.com/Advocate99/DiffGesture.git
    pip install -r requirements.txt
    
  2. Download pretrained fasttext model from here and put crawl-300d-2M-subword.bin and crawl-300d-2M-subword.vec at data/fasttext/.

  3. Download the autoencoder used for FGD which include the following:

    For the TED Gesture Dataset, we use the pretrained Auto-Encoder model provided by Yoon et al. for better reproducibility the ckpt in the train_h36m_gesture_autoencoder folder.

    For the TED Expressive Dataset, the pretrained Auto-Encoder model is provided here.

    Save the models in output/train_h36m_gesture_autoencoder/gesture_autoencoder_checkpoint_best.bin for TED Gesture, and output/TED_Expressive_output/AE-cos1e-3/checkpoint_best.bin for TED Expressive.

  4. Refer to HA2G to download the two datasets.

  5. The pretrained models can be found here.

Training

While the test metrics may vary slightly, overall, the training procedure with the given config files tends to yield similar performance results and normally outperforms all the comparison methods.

python scripts/train_ted.py --config=config/pose_diffusion_ted.yml
python scripts/train_expressive.py --config=config/pose_diffusion_expressive.yml

Inference

# synthesize short videos
python scripts/test_ted.py short
python scripts/test_expressive.py short

# synthesize long videos
python scripts/test_ted.py long
python scripts/test_expressive.py long

# metrics evaluation
python scripts/test_ted.py eval
python scripts/test_expressive.py eval

Citation

If you find our work useful, please kindly cite as:

@inproceedings{zhu2023taming,
  title={Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation},
  author={Zhu, Lingting and Liu, Xian and Liu, Xuanyu and Qian, Rui and Liu, Ziwei and Yu, Lequan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10544--10553},
  year={2023}
}

Related Links

If you are interested in Audio-Driven Co-Speech Gesture Generation, we would also like to recommend you to check out our other related works:

  • Hierarchical Audio-to-Gesture, HA2G.

  • Audio-Driven Co-Speech Gesture Video Generation, ANGIE.

Acknowledgement

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
下拉加载更多