This is the official code for Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation.
Animating virtual avatars to make co-speech gestures facilitates various applications in human-machine interaction. The existing methods mainly rely on generative adversarial networks (GANs), which typically suffer from notorious mode collapse and unstable training, thus making it difficult to learn accurate audio-gesture joint distributions. In this work, we propose a novel diffusion-based framework, named Diffusion Co-Speech Gesture (DiffGesture), to effectively capture the cross-modal audio-to-gesture associations and preserve temporal coherence for high-fidelity audio-driven co-speech gesture generation. Specifically, we first establish the diffusion-conditional generation process on clips of skeleton sequences and audio to enable the whole framework. Then, a novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency. Moreover, to eliminate temporal inconsistency, we propose an effective Diffusion Gesture Stabilizer with an annealed noise sampling strategy. Benefiting from the architectural advantages of diffusion models, we further incorporate implicit classifier-free guidance to trade off between diversity and gesture quality. Extensive experiments demonstrate that DiffGesture achieves state-of-the-art performance, which renders coherent gestures with better mode coverage and stronger audio correlations.
<img src='./misc/overview.jpg' width=800>Clone this repository and install packages:
git clone https://github.com/Advocate99/DiffGesture.git
pip install -r requirements.txt
Download pretrained fasttext model from here and put crawl-300d-2M-subword.bin and crawl-300d-2M-subword.vec at data/fasttext/.
Download the autoencoder used for FGD which include the following:
For the TED Gesture Dataset, we use the pretrained Auto-Encoder model provided by Yoon et al. for better reproducibility the ckpt in the train_h36m_gesture_autoencoder folder.
For the TED Expressive Dataset, the pretrained Auto-Encoder model is provided here.
Save the models in output/train_h36m_gesture_autoencoder/gesture_autoencoder_checkpoint_best.bin for TED Gesture, and output/TED_Expressive_output/AE-cos1e-3/checkpoint_best.bin for TED Expressive.
Refer to HA2G to download the two datasets.
The pretrained models can be found here.
While the test metrics may vary slightly, overall, the training procedure with the given config files tends to yield similar performance results and normally outperforms all the comparison methods.
python scripts/train_ted.py --config=config/pose_diffusion_ted.yml
python scripts/train_expressive.py --config=config/pose_diffusion_expressive.yml
# synthesize short videos
python scripts/test_ted.py short
python scripts/test_expressive.py short
# synthesize long videos
python scripts/test_ted.py long
python scripts/test_expressive.py long
# metrics evaluation
python scripts/test_ted.py eval
python scripts/test_expressive.py eval
If you find our work useful, please kindly cite as:
@inproceedings{zhu2023taming,
title={Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation},
author={Zhu, Lingting and Liu, Xian and Liu, Xuanyu and Qian, Rui and Liu, Ziwei and Yu, Lequan},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={10544--10553},
year={2023}
}
If you are interested in Audio-Driven Co-Speech Gesture Generation, we would also like to recommend you to check out our other related works:


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效 果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号