Efficient Large Language Models: A Survey [arXiv] (Version 1: 12/06/2023; Version 2: 12/23/2023; Version 3: 01/31/2024; Version 4: 05/23/2024, camera ready version of Transactions on Machine Learning Research)
Zhongwei Wan<sup>1</sup>, Xin Wang<sup>1</sup>, Che Liu<sup>2</sup>, Samiul Alam<sup>1</sup>, Yu Zheng<sup>3</sup>, Jiachen Liu<sup>4</sup>, Zhongnan Qu<sup>5</sup>, Shen Yan<sup>6</sup>, Yi Zhu<sup>7</sup>, Quanlu Zhang<sup>8</sup>, Mosharaf Chowdhury<sup>4</sup>, Mi Zhang<sup>1</sup>
<sup>1</sup>The Ohio State University, <sup>2</sup>Imperial College London, <sup>3</sup>Michigan State University, <sup>4</sup>University of Michigan, <sup>5</sup>Amazon AWS AI, <sup>6</sup>Google Research, <sup>7</sup>Boson AI, <sup>8</sup>Microsoft Research Asia
@article{wan2023efficient,
title={Efficient large language models: A survey},
author={Wan, Zhongwei and Wang, Xin and Liu, Che and Alam, Samiul and Zheng, Yu and others},
journal={arXiv preprint arXiv:2312.03863},
volume={1},
year={2023},
publisher={no}
}
This repository is maintained by <ins>tuidan</ins> (wang.15980@osu.edu), <ins>SUSTechBruce</ins> (wan.512@osu.edu), <ins>samiul272</ins> (alam.140@osu.edu), and <ins>mi-zhang</ins> (mizhang.1@osu.edu). We welcome feedback, suggestions, and contributions that can help improve this survey and repository so as to make them valuable resources to benefit the entire community.
We will actively maintain this repository by incorporating new research as it emerges. If you have any suggestions regarding our taxonomy, find any missed papers, or update any preprint arXiv paper that has been accepted to some venue, feel free to send us an email or submit a pull request using the following markdown format.
Paper Title, <ins>Conference/Journal/Preprint, Year</ins> [[pdf](link)] [[other resources](link)].
Large Language Models (LLMs) have demonstrated remarkable capabilities in many important tasks and have the potential to make a substantial impact on our society. Such capabilities, however, come with considerable resource demands, highlighting the strong need to develop effective techniques for addressing the efficiency challenges posed by LLMs. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from <b>model-centric</b>, <b>data-centric</b>, and <b>framework-centric</b> perspective, respectively. We hope our survey and this GitHub repository can serve as valuable resources to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.

Although LLMs are leading the next wave of AI revolution, the remarkable capabilities of LLMs come at the cost of their substantial resource demands. Figure 1 (left) illustrates the relationship between model performance and model training time in terms of GPU hours for LLaMA series, where the size of each circle is proportional to the number of model parameters. As shown, although larger models are able to achieve better performance, the amounts of GPU hours used for training them grow exponentially as model sizes scale up. In addition to training, inference also contributes quite significantly to the operational cost of LLMs. Figure 2 (right) depicts the relationship between model performance and inference throughput. Similarly, scaling up the model size enables better performance but comes at the cost of lower inference throughput (higher inference latency), presenting challenges for these models in expanding their reach to a broader customer base and diverse applications in a cost-effective way. The high resource demands of LLMs highlight the strong need to develop techniques to enhance the efficiency of LLMs. As shown in Figure 2, compared to LLaMA-1-33B, Mistral-7B, which uses grouped-query attention and sliding window attention to speed up inference, achieves comparable performance and much higher throughput. This superiority highlights the feasibility and significance of designing efficiency techniques for LLMs.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号