Efficient-LLMs-Survey

Efficient-LLMs-Survey

大语言模型效率优化技术综述

本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。

大语言模型模型压缩量化高效训练高效推理Github开源项目

Efficient Large Language Models: A Survey

Efficient Large Language Models: A Survey [arXiv] (Version 1: 12/06/2023; Version 2: 12/23/2023; Version 3: 01/31/2024; Version 4: 05/23/2024, camera ready version of Transactions on Machine Learning Research)

Zhongwei Wan<sup>1</sup>, Xin Wang<sup>1</sup>, Che Liu<sup>2</sup>, Samiul Alam<sup>1</sup>, Yu Zheng<sup>3</sup>, Jiachen Liu<sup>4</sup>, Zhongnan Qu<sup>5</sup>, Shen Yan<sup>6</sup>, Yi Zhu<sup>7</sup>, Quanlu Zhang<sup>8</sup>, Mosharaf Chowdhury<sup>4</sup>, Mi Zhang<sup>1</sup>

<sup>1</sup>The Ohio State University, <sup>2</sup>Imperial College London, <sup>3</sup>Michigan State University, <sup>4</sup>University of Michigan, <sup>5</sup>Amazon AWS AI, <sup>6</sup>Google Research, <sup>7</sup>Boson AI, <sup>8</sup>Microsoft Research Asia

⚡News: Our survey has been officially accepted by Transactions on Machine Learning Research (TMLR) 2024. Camera ready version is available at: [OpenReview]

@article{wan2023efficient,
  title={Efficient large language models: A survey},
  author={Wan, Zhongwei and Wang, Xin and Liu, Che and Alam, Samiul and Zheng, Yu and others},
  journal={arXiv preprint arXiv:2312.03863},
  volume={1},
  year={2023},
  publisher={no}
}

❤️ Community Support

This repository is maintained by <ins>tuidan</ins> (wang.15980@osu.edu), <ins>SUSTechBruce</ins> (wan.512@osu.edu), <ins>samiul272</ins> (alam.140@osu.edu), and <ins>mi-zhang</ins> (mizhang.1@osu.edu). We welcome feedback, suggestions, and contributions that can help improve this survey and repository so as to make them valuable resources to benefit the entire community.

We will actively maintain this repository by incorporating new research as it emerges. If you have any suggestions regarding our taxonomy, find any missed papers, or update any preprint arXiv paper that has been accepted to some venue, feel free to send us an email or submit a pull request using the following markdown format.

Paper Title, <ins>Conference/Journal/Preprint, Year</ins> [[pdf](link)] [[other resources](link)].

📌 What is This Survey About?

Large Language Models (LLMs) have demonstrated remarkable capabilities in many important tasks and have the potential to make a substantial impact on our society. Such capabilities, however, come with considerable resource demands, highlighting the strong need to develop effective techniques for addressing the efficiency challenges posed by LLMs. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from <b>model-centric</b>, <b>data-centric</b>, and <b>framework-centric</b> perspective, respectively. We hope our survey and this GitHub repository can serve as valuable resources to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.

🤔 Why Efficient LLMs are Needed?

img/image.jpg

Although LLMs are leading the next wave of AI revolution, the remarkable capabilities of LLMs come at the cost of their substantial resource demands. Figure 1 (left) illustrates the relationship between model performance and model training time in terms of GPU hours for LLaMA series, where the size of each circle is proportional to the number of model parameters. As shown, although larger models are able to achieve better performance, the amounts of GPU hours used for training them grow exponentially as model sizes scale up. In addition to training, inference also contributes quite significantly to the operational cost of LLMs. Figure 2 (right) depicts the relationship between model performance and inference throughput. Similarly, scaling up the model size enables better performance but comes at the cost of lower inference throughput (higher inference latency), presenting challenges for these models in expanding their reach to a broader customer base and diverse applications in a cost-effective way. The high resource demands of LLMs highlight the strong need to develop techniques to enhance the efficiency of LLMs. As shown in Figure 2, compared to LLaMA-1-33B, Mistral-7B, which uses grouped-query attention and sliding window attention to speed up inference, achieves comparable performance and much higher throughput. This superiority highlights the feasibility and significance of designing efficiency techniques for LLMs.

📖 Table of Content

🤖 Model-Centric Methods

Model Compression

Quantization

Post-Training Quantization
Weight-Only Quantization
  • I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models, <ins>arXiv, 2024</ins> [Paper]
  • IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact, <ins>arXiv, 2024</ins> [Paper]
  • OmniQuant: OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, <ins>ICLR, 2024</ins> [Paper] [Code]
  • OneBit: Towards Extremely Low-bit Large Language Models, <ins>arXiv, 2024</ins> [Paper]
  • GPTQ: Accurate Quantization for Generative Pre-trained Transformers, <ins>ICLR, 2023</ins> [Paper] [Code]
  • QuIP: 2-Bit Quantization of Large Language Models With Guarantees, <ins>arXiv, 2023</ins> [Paper] [Code]
  • AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, <ins>arXiv, 2023</ins> [Paper] [Code]
  • OWQ: Lessons Learned from Activation Outliers for Weight Quantization in Large Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
  • SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression, <ins>arXiv, 2023</ins> [Paper] [Code]
  • FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs, <ins>NeurIPS-ENLSP, 2023</ins> [Paper]
  • LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, <ins>NeurlPS, 2022</ins> [Paper] [Code]
  • Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning, <ins>NeurIPS, 2022</ins> [Paper] [Code]
  • QuantEase: Optimization-based Quantization for Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
Weight-Activation Co-Quantization
  • OmniQuant: OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, <ins>ICLR, 2024</ins> [Paper] [Code]
  • Intriguing Properties of Quantization at Scale, <ins>NeurIPS, 2023</ins> [Paper]
  • ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation, <ins>arXiv, 2023</ins> [Paper] [Code]
  • ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats, <ins>NeurIPS-ENLSP, 2023</ins> [Paper] [Code]
  • OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization, <ins>ISCA, 2023</ins> [Paper] [Code]
  • RPTQ: Reorder-based Post-training Quantization for Large Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
  • Outlier Suppression+: Accurate Quantization of Large Language Models by Equivalent and Optimal Shifting and Scaling, <ins>arXiv, 2023</ins> [Paper] [Code]
  • QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models, <ins>arXiv, 2023</ins> [Paper]
  • SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, <ins>ICML, 2023</ins> [Paper] [Code]
  • ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, <ins>NeurIPS, 2022</ins> [Paper]
Evaluation of Post-Training Quantization
  • Evaluating Quantized Large Language Models, <ins>arXiv, 2024</ins> [Paper]
Quantization-Aware Training
  • The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits, <ins>arXiv, 2024</ins> [Paper]
  • FP8-LM: Training FP8 Large Language Models, <ins>arXiv, 2023</ins> [Paper]
  • Training and inference of large language

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多