Efficient-LLMs-Survey

Efficient-LLMs-Survey

大语言模型效率优化技术综述

本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。

大语言模型模型压缩量化高效训练高效推理Github开源项目

Efficient Large Language Models: A Survey

Efficient Large Language Models: A Survey [arXiv] (Version 1: 12/06/2023; Version 2: 12/23/2023; Version 3: 01/31/2024; Version 4: 05/23/2024, camera ready version of Transactions on Machine Learning Research)

Zhongwei Wan<sup>1</sup>, Xin Wang<sup>1</sup>, Che Liu<sup>2</sup>, Samiul Alam<sup>1</sup>, Yu Zheng<sup>3</sup>, Jiachen Liu<sup>4</sup>, Zhongnan Qu<sup>5</sup>, Shen Yan<sup>6</sup>, Yi Zhu<sup>7</sup>, Quanlu Zhang<sup>8</sup>, Mosharaf Chowdhury<sup>4</sup>, Mi Zhang<sup>1</sup>

<sup>1</sup>The Ohio State University, <sup>2</sup>Imperial College London, <sup>3</sup>Michigan State University, <sup>4</sup>University of Michigan, <sup>5</sup>Amazon AWS AI, <sup>6</sup>Google Research, <sup>7</sup>Boson AI, <sup>8</sup>Microsoft Research Asia

⚡News: Our survey has been officially accepted by Transactions on Machine Learning Research (TMLR) 2024. Camera ready version is available at: [OpenReview]

@article{wan2023efficient,
  title={Efficient large language models: A survey},
  author={Wan, Zhongwei and Wang, Xin and Liu, Che and Alam, Samiul and Zheng, Yu and others},
  journal={arXiv preprint arXiv:2312.03863},
  volume={1},
  year={2023},
  publisher={no}
}

❤️ Community Support

This repository is maintained by <ins>tuidan</ins> (wang.15980@osu.edu), <ins>SUSTechBruce</ins> (wan.512@osu.edu), <ins>samiul272</ins> (alam.140@osu.edu), and <ins>mi-zhang</ins> (mizhang.1@osu.edu). We welcome feedback, suggestions, and contributions that can help improve this survey and repository so as to make them valuable resources to benefit the entire community.

We will actively maintain this repository by incorporating new research as it emerges. If you have any suggestions regarding our taxonomy, find any missed papers, or update any preprint arXiv paper that has been accepted to some venue, feel free to send us an email or submit a pull request using the following markdown format.

Paper Title, <ins>Conference/Journal/Preprint, Year</ins> [[pdf](link)] [[other resources](link)].

📌 What is This Survey About?

Large Language Models (LLMs) have demonstrated remarkable capabilities in many important tasks and have the potential to make a substantial impact on our society. Such capabilities, however, come with considerable resource demands, highlighting the strong need to develop effective techniques for addressing the efficiency challenges posed by LLMs. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from <b>model-centric</b>, <b>data-centric</b>, and <b>framework-centric</b> perspective, respectively. We hope our survey and this GitHub repository can serve as valuable resources to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.

🤔 Why Efficient LLMs are Needed?

img/image.jpg

Although LLMs are leading the next wave of AI revolution, the remarkable capabilities of LLMs come at the cost of their substantial resource demands. Figure 1 (left) illustrates the relationship between model performance and model training time in terms of GPU hours for LLaMA series, where the size of each circle is proportional to the number of model parameters. As shown, although larger models are able to achieve better performance, the amounts of GPU hours used for training them grow exponentially as model sizes scale up. In addition to training, inference also contributes quite significantly to the operational cost of LLMs. Figure 2 (right) depicts the relationship between model performance and inference throughput. Similarly, scaling up the model size enables better performance but comes at the cost of lower inference throughput (higher inference latency), presenting challenges for these models in expanding their reach to a broader customer base and diverse applications in a cost-effective way. The high resource demands of LLMs highlight the strong need to develop techniques to enhance the efficiency of LLMs. As shown in Figure 2, compared to LLaMA-1-33B, Mistral-7B, which uses grouped-query attention and sliding window attention to speed up inference, achieves comparable performance and much higher throughput. This superiority highlights the feasibility and significance of designing efficiency techniques for LLMs.

📖 Table of Content

🤖 Model-Centric Methods

Model Compression

Quantization

Post-Training Quantization
Weight-Only Quantization
  • I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models, <ins>arXiv, 2024</ins> [Paper]
  • IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact, <ins>arXiv, 2024</ins> [Paper]
  • OmniQuant: OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, <ins>ICLR, 2024</ins> [Paper] [Code]
  • OneBit: Towards Extremely Low-bit Large Language Models, <ins>arXiv, 2024</ins> [Paper]
  • GPTQ: Accurate Quantization for Generative Pre-trained Transformers, <ins>ICLR, 2023</ins> [Paper] [Code]
  • QuIP: 2-Bit Quantization of Large Language Models With Guarantees, <ins>arXiv, 2023</ins> [Paper] [Code]
  • AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, <ins>arXiv, 2023</ins> [Paper] [Code]
  • OWQ: Lessons Learned from Activation Outliers for Weight Quantization in Large Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
  • SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression, <ins>arXiv, 2023</ins> [Paper] [Code]
  • FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs, <ins>NeurIPS-ENLSP, 2023</ins> [Paper]
  • LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, <ins>NeurlPS, 2022</ins> [Paper] [Code]
  • Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning, <ins>NeurIPS, 2022</ins> [Paper] [Code]
  • QuantEase: Optimization-based Quantization for Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
Weight-Activation Co-Quantization
  • OmniQuant: OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, <ins>ICLR, 2024</ins> [Paper] [Code]
  • Intriguing Properties of Quantization at Scale, <ins>NeurIPS, 2023</ins> [Paper]
  • ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation, <ins>arXiv, 2023</ins> [Paper] [Code]
  • ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats, <ins>NeurIPS-ENLSP, 2023</ins> [Paper] [Code]
  • OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization, <ins>ISCA, 2023</ins> [Paper] [Code]
  • RPTQ: Reorder-based Post-training Quantization for Large Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
  • Outlier Suppression+: Accurate Quantization of Large Language Models by Equivalent and Optimal Shifting and Scaling, <ins>arXiv, 2023</ins> [Paper] [Code]
  • QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models, <ins>arXiv, 2023</ins> [Paper]
  • SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, <ins>ICML, 2023</ins> [Paper] [Code]
  • ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, <ins>NeurIPS, 2022</ins> [Paper]
Evaluation of Post-Training Quantization
  • Evaluating Quantized Large Language Models, <ins>arXiv, 2024</ins> [Paper]
Quantization-Aware Training
  • The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits, <ins>arXiv, 2024</ins> [Paper]
  • FP8-LM: Training FP8 Large Language Models, <ins>arXiv, 2023</ins> [Paper]
  • Training and inference of large language

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多