EvoloPy

EvoloPy

Python自然启发式优化工具箱 全局优化算法集成

EvoloPy是一个Python实现的自然启发式优化工具箱,聚焦全局优化问题。工具箱集成了粒子群优化(PSO)、多宇宙优化器(MVO)等多种经典和新型元启发式算法,利用NumPy和SciPy实现高效的数组和矩阵运算。EvoloPy提供23个基准函数,支持自定义实验参数,为优化算法研究和应用提供了开放灵活的平台。

EvoloPy优化算法全局优化Python开源工具箱Github开源项目
<div align="center"> <img alt="EvoCluster-logo" src="http://evo-ml.com/wp-content/uploads/2021/06/EvoloPy-logo.png" width=80%> </div>

EvoloPy: An open source nature-inspired optimization toolbox for global optimization in Python

The EvoloPy toolbox provides classical and recent nature-inspired metaheuristic for the global optimization. The list of optimizers that have been implemented includes Particle Swarm Optimization (PSO), Multi-Verse Optimizer (MVO), Grey Wolf Optimizer (GWO), and Moth Flame Optimization (MFO). The full list of implemented optimizers is available here https://github.com/7ossam81/EvoloPy/wiki/List-of-optimizers

If you like our framework then we would really appreciate a Star ⭐!

Features

  • Six nature-inspired metaheuristic optimizers were implemented.
  • The implimentation uses the fast array manipulation using NumPy.
  • Matrix support using SciPy's package.
  • More optimizers is comming soon.

Installation

  • Python 3.xx is required.

Run

pip3 install -r requirements.txt

(possibly with sudo)

That command above will install sklearn, NumPy, and SciPy for you.

  • If you are installing EvoloPy Toolbox onto Windows, please Install Anaconda from here https://www.continuum.io/downloads, which is the leading open data science platform powered by Python.

  • If you are installing onto Ubuntu or Debian and using Python 3 then this will pull in all the dependencies from the repositories:

    sudo apt-get install python3-numpy python3-scipy liblapack-dev libatlas-base-dev libgsl0-dev fftw-dev libglpk-dev libdsdp-dev
    

Get the source

Clone the Git repository from GitHub

git clone https://github.com/7ossam81/EvoloPy.git

Quick User Guide

EvoloPy toolbox contains twenty three benchamrks (F1-F23). The main file is the optimizer.py, which considered the interface of the toolbox. In the optimizer.py you can setup your experiment by selecting the optmizers, the benchmarks, number of runs, number of iterations, and population size. The following is a sample example to use the EvoloPy toolbox.
Select optimizers from the list of available ones: "SSA","PSO","GA","BAT","FFA","GWO","WOA","MVO","MFO","CS","HHO","SCA","JAYA","DE". For example:

optimizer=["SSA","PSO","GA"]  

After that, Select benchmark function from the list of available ones: "F1","F2","F3","F4","F5","F6","F7","F8","F9","F10","F11","F12","F13","F14","F15","F16","F17","F18","F19". For example:

objectivefunc=["F3","F4"]  

Select number of repetitions for each experiment. To obtain meaningful statistical results, usually 30 independent runs are executed for each algorithm. For example:

NumOfRuns=10  

Select general parameters for all optimizers (population size, number of iterations). For example:

params = {'PopulationSize' : 30, 'Iterations' : 50}

Choose whether to Export the results in different formats. For example:

export_flags = {'Export_avg':True, 'Export_details':True, 'Export_convergence':True, 'Export_boxplot':True}

Now your experiment is ready to run. Enjoy!

Contribute

Useful Links

List of contributors

Reference

For more information about EvoloPy, please refer to our paper:

Faris, Hossam, Ibrahim Aljarah, Seyedali Mirjalili, Pedro A. Castillo, and Juan Julián Merelo Guervós. "EvoloPy: An Open-source Nature-inspired Optimization Framework in Python." In IJCCI (ECTA), pp. 171-177. 2016. https://www.scitepress.org/Papers/2016/60482/60482.pdf

Please include the following related citations:

  • Qaddoura, Raneem, Hossam Faris, Ibrahim Aljarah, and Pedro A. Castillo. "EvoCluster: An Open-Source Nature-Inspired Optimization Clustering Framework in Python." In International Conference on the Applications of Evolutionary Computation (Part of EvoStar), pp. 20-36. Springer, Cham, 2020.
  • Ruba Abu Khurma, Ibrahim Aljarah, Ahmad Sharieh, and Seyedali Mirjalili. Evolopy-fs: An open-source nature-inspired optimization framework in python for feature selection. In Evolutionary Machine Learning Techniques, pages 131–173. Springer, 2020

Support

Use the issue tracker.

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多