USLM

USLM

语音信息分层建模与零样本文本转语音的统一框架

USLM是基于SpeechTokenizer构建的统一语音语言模型,结合自回归和非自回归模型实现语音信息的分层建模。该开源项目提供完整的安装指南、预训练模型和零样本文本转语音推理流程。USLM在LibriTTS数据集上训练,展示了语音内容和副语言信息建模的能力,为语音处理研究提供新思路。

USLM语音语言模型SpeechTokenizer零样本TTSLibriTTSGithub开源项目

USLM: 统一语音语言模型

<a href='https://0nutation.github.io/SpeechTokenizer.github.io/'><img src='https://img.shields.io/badge/项目-主页-Green'></a> <a href='https://arxiv.org/abs/2308.16692'><img src='https://img.shields.io/badge/论文-Arxiv-red'></a>

简介

USLM基于SpeechTokenizer构建,包含自回归和非自回归模型,可以分层建模语音中的信息。自回归(AR)模型通过对第一个RVQ量化器的标记进行建模来捕捉内容信息。非自回归(NAR)模型通过基于第一层标记生成后续量化器的标记来为AR模型补充副语言信息。

<br> <p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/d131cb99-4d49-4d5f-998c-35bdebe15f04.png" width="95%"> <br> 概览 </p>

安装

按照以下步骤快速开始:

# PyTorch
pip install torch==1.13.1 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install torchmetrics==0.11.1
# fbank
pip install librosa==0.8.1

# phonemizer pypinyin
apt-get install espeak-ng
## OSX: brew install espeak
pip install phonemizer==3.2.1 pypinyin==0.48.0

# lhotse更新至最新版本
# https://github.com/lhotse-speech/lhotse/pull/956
# https://github.com/lhotse-speech/lhotse/pull/960
pip uninstall lhotse
pip install git+https://github.com/lhotse-speech/lhotse

# k2
# 在https://huggingface.co/csukuangfj/k2找到正确版本
pip install https://huggingface.co/csukuangfj/k2/resolve/main/cuda/k2-1.23.4.dev20230224+cuda11.6.torch1.13.1-cp310-cp310-linux_x86_64.whl

# icefall
git clone https://github.com/k2-fsa/icefall
cd icefall
pip install -r requirements.txt
export PYTHONPATH=`pwd`/../icefall:$PYTHONPATH
echo "export PYTHONPATH=`pwd`/../icefall:\$PYTHONPATH" >> ~/.zshrc
echo "export PYTHONPATH=`pwd`/../icefall:\$PYTHONPATH" >> ~/.bashrc
cd -
source ~/.zshrc

#SpeechTokenizer
pip install -U speechtokenizer

# uslm
git clone https://github.com/0nutation/USLM
cd USLM
pip install -e .

USLM模型

此版本的USLM在LibriTTS数据集上训练,由于数据限制,性能可能不是最优的。

模型数据集描述
USLM_libriLibriTTS在LibriTTS数据集上训练的USLM

使用USLM进行零样本TTS

下载预训练的SpeechTokenizer模型:

st_dir="ckpt/speechtokenizer/" mkdir -p ${st_dir} cd ${st_dir} wget "https://huggingface.co/fnlp/SpeechTokenizer/resolve/main/speechtokenizer_hubert_avg/SpeechTokenizer.pt" wget "https://huggingface.co/fnlp/SpeechTokenizer/resolve/main/speechtokenizer_hubert_avg/config.json" cd -

下载预训练的USLM模型:

uslm_dir="ckpt/uslm/" mkdir -p ${uslm_dir} cd ${uslm_dir} wget "https://huggingface.co/fnlp/USLM/resolve/main/USLM_libritts/USLM.pt" wget "https://huggingface.co/fnlp/USLM/resolve/main/USLM_libritts/unique_text_tokens.k2symbols" cd -

推理:

out_dir="output/" mkdir -p ${out_dir} python3 bin/infer.py --output-dir ${out_dir}/ \ --model-name uslm --norm-first true --add-prenet false \ --share-embedding true --norm-first true --add-prenet false \ --audio-extractor SpeechTokenizer \ --speechtokenizer-dir "${st_dir}" \ --checkpoint=${uslm_dir}/USLM.pt \ --text-tokens "${uslm_dir}/unique_text_tokens.k2symbols" \ --text-prompts "mr Soames was a tall, spare man, of a nervous and excitable temperament." \ --audio-prompts prompts/1580_141083_000002_000002.wav \ --text "Begin with the fundamental steps of the process. This will give you a solid foundation to build upon and boost your confidence. " \

或者你可以直接运行inference.sh

bash inference.sh

致谢

VALL-E:我们基于的代码库。

引用

如果你在论文中使用了这个代码或结果,请引用我们的工作:

@misc{zhang2023speechtokenizer, title={SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models}, author={Xin Zhang and Dong Zhang and Shimin Li and Yaqian Zhou and Xipeng Qiu}, year={2023}, eprint={2308.16692}, archivePrefix={arXiv}, primaryClass={cs.CL} }

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多