SimGAN-Captcha

SimGAN-Captcha

无监督学习突破验证码识别难题

SimGAN-Captcha项目利用生成对抗网络(GAN)技术,通过合成验证码图像和精炼网络实现无监督学习。该方法无需人工标注数据,利用验证码生成器和GAN训练的精炼器生成合成样本,显著提高了验证码识别效率。项目详细阐述了数据预处理、模型架构等技术细节,为验证码识别研究提供了新思路。

Capsolver验证码破解AI服务SimGAN图像生成Github开源项目

Capsolver

image

Capsolver.com is an AI-powered service that specializes in solving various types of captchas automatically. It supports captchas such as reCAPTCHA V2, reCAPTCHA V3, hCaptcha, FunCaptcha, DataDome, AWS Captcha, Geetest, and Cloudflare Captcha / Challenge 5s, Imperva / Incapsula, among others.

For developers, Capsolver offers API integration options detailed in their documentation, facilitating the integration of captcha solving into applications. They also provide browser extensions for Chrome and Firefox, making it easy to use their service directly within a browser. Different pricing packages are available to accommodate varying needs, ensuring flexibility for users.

SimGAN-Captcha

With simulated unsupervised learning, breaking captchas has never been easier. There is no need to label any captchas manually for convnet. By using a captcha synthesizer and a refiner trained with GAN, it's feasible to generate synthesized training pairs for classifying captchas.

Link to paper: SimGAN by Apple

PDF HTML

SimGAN

The task

HackMIT Puzzle #5.

Correctly label 10000 out of 15000 captcha or 90% per character.

Preprocessing

Download target captcha files

Here we download some captchas from the contest website. Each batch has 1000 captchas. We'll use 20000 so 20 batches.

import requests import threading URL = "https://captcha.delorean.codes/u/rickyhan/challenge" DIR = "challenges/" NUM_CHALLENGES = 20 lock = threading.Lock()
def download_file(url, fname): # NOTE the stream=True parameter r = requests.get(url, stream=True) with open(fname, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) #f.flush() commented by recommendation from J.F.Sebastian with lock: pass # print fname ts = [] for i in range(NUM_CHALLENGES): fname = DIR + "challenge-{}".format(i) t = threading.Thread(target=download_file, args=(URL, fname)) ts.append(t) t.start() for t in ts: t.join() print "Done"
Done

Decompression

Each challenge file is actually a json object containing 1000 base64 encoded jpg image file. So for each of these challenge files, we decompress each base64 strs into a jpeg and put that under a seprate folder.

import json, base64, os IMG_DIR = "./orig" fnames = ["{}/challenge-{}".format(DIR, i) for i in range(NUM_CHALLENGES)] if not os.path.exists(IMG_DIR): os.mkdir(IMG_DIR) def save_imgs(fname): with open(fname) as f: l = json.loads(f.read()) for image in l['images']: b = base64.decodestring(image['jpg_base64']) name = image['name'] with open(IMG_DIR+"/{}.jpg".format(name), 'w') as f: f.write(b) for fname in fnames: save_imgs(fname) assert len(os.listdir(IMG_DIR)) == 1000 * NUM_CHALLENGES
from PIL import Image imgpath = IMG_DIR + "/"+ os.listdir(IMG_DIR)[0] imgpath2 = IMG_DIR + "/"+ os.listdir(IMG_DIR)[3] im = Image.open(example_image_path) im2 = Image.open(example_image_path2) IMG_FNAMES = [IMG_DIR + '/' + p for p in os.listdir(IMG_DIR)]
im

png

im2

png

Convert to black and white

Instead of RGB, binarized image saves significant compute. Here we hardcode a threshold and iterate over each pixel to obtain a binary image.

def gray(img_path): # convert to grayscale, then binarize img = Image.open(img_path).convert("L") img = img.point(lambda x: 255 if x > 200 or x == 0 else x) # value found through T&E img = img.point(lambda x: 0 if x < 255 else 255, "1") img.save(img_path) for img_path in IMG_FNAMES: gray(img_path)
im = Image.open(example_image_path) im

png

Find mask

As you may have noticed, all the captchas share the same horizontal lines. Since this is a contest, it was a function of participant's username. In the real world, these noises can be filtered out using morphological transformation with OpenCV.

We will extract and save the lines(noise) for later use. Here we average all 20000 captchas and set a threshold as above. Another method is using a bit mask (&=) to iteratively filter out surrounding black pixels i.e.

mask = np.ones((height, width))
for im in ims:
    mask &= im

The effectiveness of bit mask depends on how clean the binarized data is. With the averaging method, some error is allowed.

import numpy as np WIDTH, HEIGHT = im.size MASK_DIR = "avg.png"
def generateMask(): N=1000*NUM_CHALLENGES arr=np.zeros((HEIGHT, WIDTH),np.float) for fname in IMG_FNAMES: imarr=np.array(Image.open(fname),dtype=np.float) arr=arr+imarr/N arr=np.array(np.round(arr),dtype=np.uint8) out=Image.fromarray(arr,mode="L") out.save(MASK_DIR) generateMask()
im = Image.open(MASK_DIR) # ok this can be done with binary mask: &= im

png

im = Image.open(MASK_DIR) im = im.point(lambda x:255 if x > 230 else x) im = im.point(lambda x:0 if x<255 else 255, "1") im.save(MASK_DIR)
im

png

Generator for real captchas

Using a Keras built in generator function flow_from_directory to automatically import and preprocess real captchas from a folder.

from keras import models from keras import layers from keras import optimizers from keras import applications from keras.preprocessing import image import tensorflow as tf
# Real data generator datagen = image.ImageDataGenerator( preprocessing_function=applications.xception.preprocess_input ) flow_from_directory_params = {'target_size': (HEIGHT, WIDTH), 'color_mode': 'grayscale', 'class_mode': None, 'batch_size': BATCH_SIZE} real_generator = datagen.flow_from_directory( directory=".", **flow_from_directory_params )

(Dumb) Generator

Now that we have processed all the real captchas, we need to define a generator that outputs (captcha, label) pairs where the captchas should look almost like the real ones.

We filter out the outliers that contain overlapping characters.

# Synthetic captcha generator from PIL import ImageFont, ImageDraw from random import choice, random from string import ascii_lowercase, digits alphanumeric = ascii_lowercase + digits def fuzzy_loc(locs): acc = [] for i,loc in enumerate(locs[:-1]): if locs[i+1] - loc < 8: continue else: acc.append(loc) return acc def seg(img): arr = np.array(img, dtype=np.float) arr = arr.transpose() # arr = np.mean(arr, axis=2) arr = np.sum(arr, axis=1) locs = np.where(arr < arr.min() + 2)[0].tolist() locs = fuzzy_loc(locs) return locs def is_well_formed(img_path): original_img = Image.open(img_path) img = original_img.convert('1') return len(seg(img)) == 4 noiseimg = np.array(Image.open("avg.png").convert("1")) # noiseimg = np.bitwise_not(noiseimg) fnt = ImageFont.truetype('./arial-extra.otf', 26) def gen_one(): og = Image.new("1", (100,50)) text = ''.join([choice(alphanumeric) for _ in range(4)]) draw = ImageDraw.Draw(og) for i, t in enumerate(text): txt=Image.new('L', (40,40)) d = ImageDraw.Draw(txt) d.text( (0, 0), t, font=fnt, fill=255) if random() > 0.5: w=txt.rotate(-20*(random()-1), expand=1) og.paste( w, (i*20 + int(25*random()), int(25+30*(random()-1))), w) else: w=txt.rotate(20*(random()-1), expand=1) og.paste( w, (i*20 + int(25*random()), int(20*random())), w) segments = seg(og) if len(segments) != 4: return gen_one() ogarr = np.array(og) ogarr = np.bitwise_or(noiseimg, ogarr) ogarr = np.expand_dims(ogarr, axis=2).astype(float) ogarr = np.random.random(size=(50,100,1)) * ogarr ogarr = (ogarr > 0.0).astype(float) # add noise return ogarr, text def synth_generator(): arrs = [] while True: for _ in range(BATCH_SIZE): arrs.append(gen_one()[0]) yield np.array(arrs) arrs = []
def get_image_batch(generator): """keras generators may generate an incomplete batch for the last batch""" img_batch = generator.next() if len(img_batch) != BATCH_SIZE: img_batch = generator.next() assert len(img_batch) == BATCH_SIZE return img_batch
import matplotlib.pyplot as plt imarr = get_image_batch(real_generator)[0, :, :, 0] plt.imshow(imarr)
<matplotlib.image.AxesImage at 0x7f160fda74d0>

png

imarr = get_image_batch(synth_generator())[0, :, :, 0] print imarr.shape plt.imshow(imarr)
(50, 100)





<matplotlib.image.AxesImage at 0x7f160fdd4390>

png

What happened next?

Plug all the data in an MNIST-like classifier and call it a day. Unfortunately, it's not that simple.

I actually spent a long time fine-tuning the network but accuracy plateued around 55% sampled. The passing requirement is 10000 out of 15000 submitted or 90% accuracy or 66% per char. I was facing a dilemma: tune the model even further or manually label x amount of data:

0.55 * (15000-x) + x = 10000
                   x = 3888

Obviously I am not going to label 4000 captchas and break my neck in the process.

Meanwhile, there happened a burnt out guy who decided to label all 10000 captchas. This dilligent dude was 2000 in. I asked if he is willing to collaborate on a solution. It's almost like he didn't want to label captchas anymore. He agreed immediately.

Using the same model, accuracy immediately shot up to 95% and we both qualified for HackMIT.

/aside

After the contest, I perfected the model and got 95% without labelling a single image. Here is the model for SimGAN:

SimGAN

Model Definition

There are three components to the network:

Refiner

The refiner network, Rθ, is a residual network (ResNet). It modifies the synthetic image on a pixel level, rather than holistically modifying the image content, preserving the global structure and annotations.

Discriminator

The discriminator network Dφ, is a simple ConvNet that contains 5 conv layers and 2 max-pooling layers. It's abinary classifier that outputs whether a captcha is synthesized or real.

Combined

Pipe the refined image into discriminator.

def refiner_network(input_image_tensor): """ :param input_image_tensor: Input tensor that corresponds to a synthetic image. :return: Output tensor that corresponds to a refined synthetic image. """ def resnet_block(input_features, nb_features=64, nb_kernel_rows=3, nb_kernel_cols=3): """ A ResNet block with two `nb_kernel_rows` x `nb_kernel_cols` convolutional layers, each with `nb_features` feature maps. See Figure 6 in https://arxiv.org/pdf/1612.07828v1.pdf. :param input_features: Input tensor to ResNet block. :return: Output tensor from ResNet block. """ y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(input_features) y = layers.Activation('relu')(y) y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(y) y = layers.merge([input_features, y], mode='sum') return layers.Activation('relu')(y) # an input image of size w × h is convolved with 3 × 3 filters that output 64 feature maps x = layers.Convolution2D(64, 3, 3, border_mode='same', activation='relu')(input_image_tensor) # the output is passed through 4 ResNet blocks for _ in range(4): x = resnet_block(x) # the output of the last ResNet block is passed to a 1 × 1 convolutional layer producing 1 feature map # corresponding to the refined synthetic image return layers.Convolution2D(1, 1, 1, border_mode='same', activation='tanh')(x) def discriminator_network(input_image_tensor): """ :param input_image_tensor: Input tensor corresponding to an image, either real or refined. :return: Output tensor that corresponds to the probability of whether an image is real or refined. """ x = layers.Convolution2D(96, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(input_image_tensor) x = layers.Convolution2D(64, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(3, 3), border_mode='same', strides=(1, 1))(x) x = layers.Convolution2D(32, 3, 3, border_mode='same', subsample=(1, 1), activation='relu')(x) x =

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多