Capsolver.com is an AI-powered service that specializes in solving various types of captchas automatically. It supports captchas such as reCAPTCHA V2, reCAPTCHA V3, hCaptcha, FunCaptcha, DataDome, AWS Captcha, Geetest, and Cloudflare Captcha / Challenge 5s, Imperva / Incapsula, among others.
For developers, Capsolver offers API integration options detailed in their documentation, facilitating the integration of captcha solving into applications. They also provide browser extensions for Chrome and Firefox, making it easy to use their service directly within a browser. Different pricing packages are available to accommodate varying needs, ensuring flexibility for users.
With simulated unsupervised learning, breaking captchas has never been easier. There is no need to label any captchas manually for convnet. By using a captcha synthesizer and a refiner trained with GAN, it's feasible to generate synthesized training pairs for classifying captchas.
Correctly label 10000 out of 15000 captcha or 90% per character.
Here we download some captchas from the contest website. Each batch has 1000 captchas. We'll use 20000 so 20 batches.
import requests import threading URL = "https://captcha.delorean.codes/u/rickyhan/challenge" DIR = "challenges/" NUM_CHALLENGES = 20 lock = threading.Lock()
def download_file(url, fname): # NOTE the stream=True parameter r = requests.get(url, stream=True) with open(fname, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) #f.flush() commented by recommendation from J.F.Sebastian with lock: pass # print fname ts = [] for i in range(NUM_CHALLENGES): fname = DIR + "challenge-{}".format(i) t = threading.Thread(target=download_file, args=(URL, fname)) ts.append(t) t.start() for t in ts: t.join() print "Done"
Done
Each challenge file is actually a json object containing 1000 base64 encoded jpg image file. So for each of these challenge files, we decompress each base64 strs into a jpeg and put that under a seprate folder.
import json, base64, os IMG_DIR = "./orig" fnames = ["{}/challenge-{}".format(DIR, i) for i in range(NUM_CHALLENGES)] if not os.path.exists(IMG_DIR): os.mkdir(IMG_DIR) def save_imgs(fname): with open(fname) as f: l = json.loads(f.read()) for image in l['images']: b = base64.decodestring(image['jpg_base64']) name = image['name'] with open(IMG_DIR+"/{}.jpg".format(name), 'w') as f: f.write(b) for fname in fnames: save_imgs(fname) assert len(os.listdir(IMG_DIR)) == 1000 * NUM_CHALLENGES
from PIL import Image imgpath = IMG_DIR + "/"+ os.listdir(IMG_DIR)[0] imgpath2 = IMG_DIR + "/"+ os.listdir(IMG_DIR)[3] im = Image.open(example_image_path) im2 = Image.open(example_image_path2) IMG_FNAMES = [IMG_DIR + '/' + p for p in os.listdir(IMG_DIR)]
im
im2
Instead of RGB, binarized image saves significant compute. Here we hardcode a threshold and iterate over each pixel to obtain a binary image.
def gray(img_path): # convert to grayscale, then binarize img = Image.open(img_path).convert("L") img = img.point(lambda x: 255 if x > 200 or x == 0 else x) # value found through T&E img = img.point(lambda x: 0 if x < 255 else 255, "1") img.save(img_path) for img_path in IMG_FNAMES: gray(img_path)
im = Image.open(example_image_path) im
As you may have noticed, all the captchas share the same horizontal lines. Since this is a contest, it was a function of participant's username. In the real world, these noises can be filtered out using morphological transformation with OpenCV.
We will extract and save the lines(noise) for later use. Here we average all 20000 captchas and set a threshold as above. Another method is using a bit mask (&=) to iteratively filter out surrounding black pixels i.e.
mask = np.ones((height, width))
for im in ims:
mask &= im
The effectiveness of bit mask depends on how clean the binarized data is. With the averaging method, some error is allowed.
import numpy as np WIDTH, HEIGHT = im.size MASK_DIR = "avg.png"
def generateMask(): N=1000*NUM_CHALLENGES arr=np.zeros((HEIGHT, WIDTH),np.float) for fname in IMG_FNAMES: imarr=np.array(Image.open(fname),dtype=np.float) arr=arr+imarr/N arr=np.array(np.round(arr),dtype=np.uint8) out=Image.fromarray(arr,mode="L") out.save(MASK_DIR) generateMask()
im = Image.open(MASK_DIR) # ok this can be done with binary mask: &= im
im = Image.open(MASK_DIR) im = im.point(lambda x:255 if x > 230 else x) im = im.point(lambda x:0 if x<255 else 255, "1") im.save(MASK_DIR)
im
Using a Keras built in generator function flow_from_directory
to automatically import and preprocess real captchas from a folder.
from keras import models from keras import layers from keras import optimizers from keras import applications from keras.preprocessing import image import tensorflow as tf
# Real data generator datagen = image.ImageDataGenerator( preprocessing_function=applications.xception.preprocess_input ) flow_from_directory_params = {'target_size': (HEIGHT, WIDTH), 'color_mode': 'grayscale', 'class_mode': None, 'batch_size': BATCH_SIZE} real_generator = datagen.flow_from_directory( directory=".", **flow_from_directory_params )
Now that we have processed all the real captchas, we need to define a generator that outputs (captcha, label) pairs where the captchas should look almost like the real ones.
We filter out the outliers that contain overlapping characters.
# Synthetic captcha generator from PIL import ImageFont, ImageDraw from random import choice, random from string import ascii_lowercase, digits alphanumeric = ascii_lowercase + digits def fuzzy_loc(locs): acc = [] for i,loc in enumerate(locs[:-1]): if locs[i+1] - loc < 8: continue else: acc.append(loc) return acc def seg(img): arr = np.array(img, dtype=np.float) arr = arr.transpose() # arr = np.mean(arr, axis=2) arr = np.sum(arr, axis=1) locs = np.where(arr < arr.min() + 2)[0].tolist() locs = fuzzy_loc(locs) return locs def is_well_formed(img_path): original_img = Image.open(img_path) img = original_img.convert('1') return len(seg(img)) == 4 noiseimg = np.array(Image.open("avg.png").convert("1")) # noiseimg = np.bitwise_not(noiseimg) fnt = ImageFont.truetype('./arial-extra.otf', 26) def gen_one(): og = Image.new("1", (100,50)) text = ''.join([choice(alphanumeric) for _ in range(4)]) draw = ImageDraw.Draw(og) for i, t in enumerate(text): txt=Image.new('L', (40,40)) d = ImageDraw.Draw(txt) d.text( (0, 0), t, font=fnt, fill=255) if random() > 0.5: w=txt.rotate(-20*(random()-1), expand=1) og.paste( w, (i*20 + int(25*random()), int(25+30*(random()-1))), w) else: w=txt.rotate(20*(random()-1), expand=1) og.paste( w, (i*20 + int(25*random()), int(20*random())), w) segments = seg(og) if len(segments) != 4: return gen_one() ogarr = np.array(og) ogarr = np.bitwise_or(noiseimg, ogarr) ogarr = np.expand_dims(ogarr, axis=2).astype(float) ogarr = np.random.random(size=(50,100,1)) * ogarr ogarr = (ogarr > 0.0).astype(float) # add noise return ogarr, text def synth_generator(): arrs = [] while True: for _ in range(BATCH_SIZE): arrs.append(gen_one()[0]) yield np.array(arrs) arrs = []
def get_image_batch(generator): """keras generators may generate an incomplete batch for the last batch""" img_batch = generator.next() if len(img_batch) != BATCH_SIZE: img_batch = generator.next() assert len(img_batch) == BATCH_SIZE return img_batch
import matplotlib.pyplot as plt imarr = get_image_batch(real_generator)[0, :, :, 0] plt.imshow(imarr)
<matplotlib.image.AxesImage at 0x7f160fda74d0>
imarr = get_image_batch(synth_generator())[0, :, :, 0] print imarr.shape plt.imshow(imarr)
(50, 100)
<matplotlib.image.AxesImage at 0x7f160fdd4390>
Plug all the data in an MNIST-like classifier and call it a day. Unfortunately, it's not that simple.
I actually spent a long time fine-tuning the network but accuracy plateued around 55% sampled. The passing requirement is 10000 out of 15000 submitted or 90% accuracy or 66% per char. I was facing a dilemma: tune the model even further or manually label x amount of data:
0.55 * (15000-x) + x = 10000
x = 3888
Obviously I am not going to label 4000 captchas and break my neck in the process.
Meanwhile, there happened a burnt out guy who decided to label all 10000 captchas. This dilligent dude was 2000 in. I asked if he is willing to collaborate on a solution. It's almost like he didn't want to label captchas anymore. He agreed immediately.
Using the same model, accuracy immediately shot up to 95% and we both qualified for HackMIT.
/aside
After the contest, I perfected the model and got 95% without labelling a single image. Here is the model for SimGAN:
There are three components to the network:
The refiner network, Rθ, is a residual network (ResNet). It modifies the synthetic image on a pixel level, rather than holistically modifying the image content, preserving the global structure and annotations.
The discriminator network Dφ, is a simple ConvNet that contains 5 conv layers and 2 max-pooling layers. It's abinary classifier that outputs whether a captcha is synthesized or real.
Pipe the refined image into discriminator.
def refiner_network(input_image_tensor): """ :param input_image_tensor: Input tensor that corresponds to a synthetic image. :return: Output tensor that corresponds to a refined synthetic image. """ def resnet_block(input_features, nb_features=64, nb_kernel_rows=3, nb_kernel_cols=3): """ A ResNet block with two `nb_kernel_rows` x `nb_kernel_cols` convolutional layers, each with `nb_features` feature maps. See Figure 6 in https://arxiv.org/pdf/1612.07828v1.pdf. :param input_features: Input tensor to ResNet block. :return: Output tensor from ResNet block. """ y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(input_features) y = layers.Activation('relu')(y) y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(y) y = layers.merge([input_features, y], mode='sum') return layers.Activation('relu')(y) # an input image of size w × h is convolved with 3 × 3 filters that output 64 feature maps x = layers.Convolution2D(64, 3, 3, border_mode='same', activation='relu')(input_image_tensor) # the output is passed through 4 ResNet blocks for _ in range(4): x = resnet_block(x) # the output of the last ResNet block is passed to a 1 × 1 convolutional layer producing 1 feature map # corresponding to the refined synthetic image return layers.Convolution2D(1, 1, 1, border_mode='same', activation='tanh')(x) def discriminator_network(input_image_tensor): """ :param input_image_tensor: Input tensor corresponding to an image, either real or refined. :return: Output tensor that corresponds to the probability of whether an image is real or refined. """ x = layers.Convolution2D(96, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(input_image_tensor) x = layers.Convolution2D(64, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(3, 3), border_mode='same', strides=(1, 1))(x) x = layers.Convolution2D(32, 3, 3, border_mode='same', subsample=(1, 1), activation='relu')(x) x =
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号