SimGAN-Captcha

SimGAN-Captcha

无监督学习突破验证码识别难题

SimGAN-Captcha项目利用生成对抗网络(GAN)技术,通过合成验证码图像和精炼网络实现无监督学习。该方法无需人工标注数据,利用验证码生成器和GAN训练的精炼器生成合成样本,显著提高了验证码识别效率。项目详细阐述了数据预处理、模型架构等技术细节,为验证码识别研究提供了新思路。

Capsolver验证码破解AI服务SimGAN图像生成Github开源项目

Capsolver

image

Capsolver.com is an AI-powered service that specializes in solving various types of captchas automatically. It supports captchas such as reCAPTCHA V2, reCAPTCHA V3, hCaptcha, FunCaptcha, DataDome, AWS Captcha, Geetest, and Cloudflare Captcha / Challenge 5s, Imperva / Incapsula, among others.

For developers, Capsolver offers API integration options detailed in their documentation, facilitating the integration of captcha solving into applications. They also provide browser extensions for Chrome and Firefox, making it easy to use their service directly within a browser. Different pricing packages are available to accommodate varying needs, ensuring flexibility for users.

SimGAN-Captcha

With simulated unsupervised learning, breaking captchas has never been easier. There is no need to label any captchas manually for convnet. By using a captcha synthesizer and a refiner trained with GAN, it's feasible to generate synthesized training pairs for classifying captchas.

Link to paper: SimGAN by Apple

PDF HTML

SimGAN

The task

HackMIT Puzzle #5.

Correctly label 10000 out of 15000 captcha or 90% per character.

Preprocessing

Download target captcha files

Here we download some captchas from the contest website. Each batch has 1000 captchas. We'll use 20000 so 20 batches.

import requests import threading URL = "https://captcha.delorean.codes/u/rickyhan/challenge" DIR = "challenges/" NUM_CHALLENGES = 20 lock = threading.Lock()
def download_file(url, fname): # NOTE the stream=True parameter r = requests.get(url, stream=True) with open(fname, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) #f.flush() commented by recommendation from J.F.Sebastian with lock: pass # print fname ts = [] for i in range(NUM_CHALLENGES): fname = DIR + "challenge-{}".format(i) t = threading.Thread(target=download_file, args=(URL, fname)) ts.append(t) t.start() for t in ts: t.join() print "Done"
Done

Decompression

Each challenge file is actually a json object containing 1000 base64 encoded jpg image file. So for each of these challenge files, we decompress each base64 strs into a jpeg and put that under a seprate folder.

import json, base64, os IMG_DIR = "./orig" fnames = ["{}/challenge-{}".format(DIR, i) for i in range(NUM_CHALLENGES)] if not os.path.exists(IMG_DIR): os.mkdir(IMG_DIR) def save_imgs(fname): with open(fname) as f: l = json.loads(f.read()) for image in l['images']: b = base64.decodestring(image['jpg_base64']) name = image['name'] with open(IMG_DIR+"/{}.jpg".format(name), 'w') as f: f.write(b) for fname in fnames: save_imgs(fname) assert len(os.listdir(IMG_DIR)) == 1000 * NUM_CHALLENGES
from PIL import Image imgpath = IMG_DIR + "/"+ os.listdir(IMG_DIR)[0] imgpath2 = IMG_DIR + "/"+ os.listdir(IMG_DIR)[3] im = Image.open(example_image_path) im2 = Image.open(example_image_path2) IMG_FNAMES = [IMG_DIR + '/' + p for p in os.listdir(IMG_DIR)]
im

png

im2

png

Convert to black and white

Instead of RGB, binarized image saves significant compute. Here we hardcode a threshold and iterate over each pixel to obtain a binary image.

def gray(img_path): # convert to grayscale, then binarize img = Image.open(img_path).convert("L") img = img.point(lambda x: 255 if x > 200 or x == 0 else x) # value found through T&E img = img.point(lambda x: 0 if x < 255 else 255, "1") img.save(img_path) for img_path in IMG_FNAMES: gray(img_path)
im = Image.open(example_image_path) im

png

Find mask

As you may have noticed, all the captchas share the same horizontal lines. Since this is a contest, it was a function of participant's username. In the real world, these noises can be filtered out using morphological transformation with OpenCV.

We will extract and save the lines(noise) for later use. Here we average all 20000 captchas and set a threshold as above. Another method is using a bit mask (&=) to iteratively filter out surrounding black pixels i.e.

mask = np.ones((height, width))
for im in ims:
    mask &= im

The effectiveness of bit mask depends on how clean the binarized data is. With the averaging method, some error is allowed.

import numpy as np WIDTH, HEIGHT = im.size MASK_DIR = "avg.png"
def generateMask(): N=1000*NUM_CHALLENGES arr=np.zeros((HEIGHT, WIDTH),np.float) for fname in IMG_FNAMES: imarr=np.array(Image.open(fname),dtype=np.float) arr=arr+imarr/N arr=np.array(np.round(arr),dtype=np.uint8) out=Image.fromarray(arr,mode="L") out.save(MASK_DIR) generateMask()
im = Image.open(MASK_DIR) # ok this can be done with binary mask: &= im

png

im = Image.open(MASK_DIR) im = im.point(lambda x:255 if x > 230 else x) im = im.point(lambda x:0 if x<255 else 255, "1") im.save(MASK_DIR)
im

png

Generator for real captchas

Using a Keras built in generator function flow_from_directory to automatically import and preprocess real captchas from a folder.

from keras import models from keras import layers from keras import optimizers from keras import applications from keras.preprocessing import image import tensorflow as tf
# Real data generator datagen = image.ImageDataGenerator( preprocessing_function=applications.xception.preprocess_input ) flow_from_directory_params = {'target_size': (HEIGHT, WIDTH), 'color_mode': 'grayscale', 'class_mode': None, 'batch_size': BATCH_SIZE} real_generator = datagen.flow_from_directory( directory=".", **flow_from_directory_params )

(Dumb) Generator

Now that we have processed all the real captchas, we need to define a generator that outputs (captcha, label) pairs where the captchas should look almost like the real ones.

We filter out the outliers that contain overlapping characters.

# Synthetic captcha generator from PIL import ImageFont, ImageDraw from random import choice, random from string import ascii_lowercase, digits alphanumeric = ascii_lowercase + digits def fuzzy_loc(locs): acc = [] for i,loc in enumerate(locs[:-1]): if locs[i+1] - loc < 8: continue else: acc.append(loc) return acc def seg(img): arr = np.array(img, dtype=np.float) arr = arr.transpose() # arr = np.mean(arr, axis=2) arr = np.sum(arr, axis=1) locs = np.where(arr < arr.min() + 2)[0].tolist() locs = fuzzy_loc(locs) return locs def is_well_formed(img_path): original_img = Image.open(img_path) img = original_img.convert('1') return len(seg(img)) == 4 noiseimg = np.array(Image.open("avg.png").convert("1")) # noiseimg = np.bitwise_not(noiseimg) fnt = ImageFont.truetype('./arial-extra.otf', 26) def gen_one(): og = Image.new("1", (100,50)) text = ''.join([choice(alphanumeric) for _ in range(4)]) draw = ImageDraw.Draw(og) for i, t in enumerate(text): txt=Image.new('L', (40,40)) d = ImageDraw.Draw(txt) d.text( (0, 0), t, font=fnt, fill=255) if random() > 0.5: w=txt.rotate(-20*(random()-1), expand=1) og.paste( w, (i*20 + int(25*random()), int(25+30*(random()-1))), w) else: w=txt.rotate(20*(random()-1), expand=1) og.paste( w, (i*20 + int(25*random()), int(20*random())), w) segments = seg(og) if len(segments) != 4: return gen_one() ogarr = np.array(og) ogarr = np.bitwise_or(noiseimg, ogarr) ogarr = np.expand_dims(ogarr, axis=2).astype(float) ogarr = np.random.random(size=(50,100,1)) * ogarr ogarr = (ogarr > 0.0).astype(float) # add noise return ogarr, text def synth_generator(): arrs = [] while True: for _ in range(BATCH_SIZE): arrs.append(gen_one()[0]) yield np.array(arrs) arrs = []
def get_image_batch(generator): """keras generators may generate an incomplete batch for the last batch""" img_batch = generator.next() if len(img_batch) != BATCH_SIZE: img_batch = generator.next() assert len(img_batch) == BATCH_SIZE return img_batch
import matplotlib.pyplot as plt imarr = get_image_batch(real_generator)[0, :, :, 0] plt.imshow(imarr)
<matplotlib.image.AxesImage at 0x7f160fda74d0>

png

imarr = get_image_batch(synth_generator())[0, :, :, 0] print imarr.shape plt.imshow(imarr)
(50, 100)





<matplotlib.image.AxesImage at 0x7f160fdd4390>

png

What happened next?

Plug all the data in an MNIST-like classifier and call it a day. Unfortunately, it's not that simple.

I actually spent a long time fine-tuning the network but accuracy plateued around 55% sampled. The passing requirement is 10000 out of 15000 submitted or 90% accuracy or 66% per char. I was facing a dilemma: tune the model even further or manually label x amount of data:

0.55 * (15000-x) + x = 10000
                   x = 3888

Obviously I am not going to label 4000 captchas and break my neck in the process.

Meanwhile, there happened a burnt out guy who decided to label all 10000 captchas. This dilligent dude was 2000 in. I asked if he is willing to collaborate on a solution. It's almost like he didn't want to label captchas anymore. He agreed immediately.

Using the same model, accuracy immediately shot up to 95% and we both qualified for HackMIT.

/aside

After the contest, I perfected the model and got 95% without labelling a single image. Here is the model for SimGAN:

SimGAN

Model Definition

There are three components to the network:

Refiner

The refiner network, Rθ, is a residual network (ResNet). It modifies the synthetic image on a pixel level, rather than holistically modifying the image content, preserving the global structure and annotations.

Discriminator

The discriminator network Dφ, is a simple ConvNet that contains 5 conv layers and 2 max-pooling layers. It's abinary classifier that outputs whether a captcha is synthesized or real.

Combined

Pipe the refined image into discriminator.

def refiner_network(input_image_tensor): """ :param input_image_tensor: Input tensor that corresponds to a synthetic image. :return: Output tensor that corresponds to a refined synthetic image. """ def resnet_block(input_features, nb_features=64, nb_kernel_rows=3, nb_kernel_cols=3): """ A ResNet block with two `nb_kernel_rows` x `nb_kernel_cols` convolutional layers, each with `nb_features` feature maps. See Figure 6 in https://arxiv.org/pdf/1612.07828v1.pdf. :param input_features: Input tensor to ResNet block. :return: Output tensor from ResNet block. """ y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(input_features) y = layers.Activation('relu')(y) y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(y) y = layers.merge([input_features, y], mode='sum') return layers.Activation('relu')(y) # an input image of size w × h is convolved with 3 × 3 filters that output 64 feature maps x = layers.Convolution2D(64, 3, 3, border_mode='same', activation='relu')(input_image_tensor) # the output is passed through 4 ResNet blocks for _ in range(4): x = resnet_block(x) # the output of the last ResNet block is passed to a 1 × 1 convolutional layer producing 1 feature map # corresponding to the refined synthetic image return layers.Convolution2D(1, 1, 1, border_mode='same', activation='tanh')(x) def discriminator_network(input_image_tensor): """ :param input_image_tensor: Input tensor corresponding to an image, either real or refined. :return: Output tensor that corresponds to the probability of whether an image is real or refined. """ x = layers.Convolution2D(96, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(input_image_tensor) x = layers.Convolution2D(64, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(x) x = layers.MaxPooling2D(pool_size=(3, 3), border_mode='same', strides=(1, 1))(x) x = layers.Convolution2D(32, 3, 3, border_mode='same', subsample=(1, 1), activation='relu')(x) x =

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多