在自然语言处理领域,实时语音转录一直是一个具有挑战性的任务。OpenAI的Whisper模型虽然在语音识别和翻译方面表现出色,但并不是为实时转录而设计的。然而,一个名为Whisper Streaming的创新项目改变了这一现状,它成功地将Whisper转变为一个高效的实时转录系统。本文将深入探讨Whisper Streaming项目的各个方面,包括其背景、实现原理、安装使用方法以及性能评估等。
Whisper Streaming项目由Dominik Macháček、Raj Dabre和Ondřej Bojar于2023年提出。该项目的核心目标是将Whisper模型改造成一个能够进行实时语音转录和翻译的系统。研究团队在Whisper的基础上进行了创新,开发出了Whisper-Streaming实现。
Whisper-Streaming采用了本地一致性策略(local agreement policy)和自适应延迟机制,使得流式转录成为可能。根据研究结果,Whisper-Streaming在长篇未分段语音转录测试集上实现了高质量输出,平均延迟仅为3.3秒。此外,该系统还在多语言会议的实时转录服务中展现出了卓越的稳定性和实用性。
要使用Whisper Streaming,需要按照以下步骤进行安装和配置:
安装音频处理库:
pip install librosa soundfile
选择并安装Whisper后端。推荐使用支持GPU的faster-whisper:
pip install faster-whisper
安装语音活动控制器(可选但推荐):
pip install torch torchaudio
根据需要安装句子分割器(可选)。
值得注意的是,Whisper Streaming支持多种后端,包括faster-whisper、whisper-timestamped和OpenAI Whisper API。用户可以根据自己的需求和硬件条件选择合适的后端。
Whisper Streaming提供了多种使用模式,包括:
从音频文件模拟实时处理:
python3 whisper_online.py en-demo16.wav --language en --min-chunk-size 1 > out.txt
作为Python模块使用:
from whisper_online import * asr = FasterWhisperASR("en", "large-v2") online = OnlineASRProcessor(asr) while audio_has_not_ended: a = # 接收新的音频块 online.insert_audio_chunk(a) o = online.process_iter() print(o) # 处理当前部分输出
作为服务器从麦克风实时获取音频:
whisper_online_server.py [options]
Whisper Streaming的核心思想是解决Whisper模型在处理长音频时的局限性。传统的Whisper模型设计用于处理最长30秒且包含完整句子的音频片段。对于更长的音频,需要将其分割成短片段并使用"初始提示"进行合并。然而,这种简单的固定窗口分割方法在低延迟的实时流式模式下效果不佳,可能会在单词中间进行切分。
为了解决这个问题,Whisper Streaming引入了LocalAgreement-n策略:如果n个连续的更新(每个更新都有新可用的音频流块)在前缀转录上达成一致,则该前缀被确认。此外,项目还采用了以下技术:
这些技术的综合应用使得Whisper Streaming能够连续处理新的音频块,输出由两次迭代确认的转录,并在确认完整句子的时间戳上滚动音频处理缓冲区。
根据研究论文的结果,Whisper Streaming在长篇未分段语音转录测试集上表现优异,达到了高质量输出和低延迟的双重目标。具体性能指标包括:
这些数据充分证明了Whisper Streaming在实际应用中的潜力和优势。
Whisper Streaming是一个开源项目,欢迎社区贡献。目前,项目已经收到了许多有价值的贡献,包括新功能的拉取请求和错误修复。此外,还有一些值得关注的相关资源:
展望未来,Whisper Streaming项目有望在以下方面继续发展:
Whisper Streaming项目成功地将Whisper模型转化为一个强大的实时语音转录系统。通过创新的技术方案,该项目解决了长音频处理和低延迟要求之间的矛盾,为实时语音转录和翻译领域带来了新的可能性。无论是学术研究还是商业应用,Whisper Streaming都展现出了巨大的潜力。
随着项目的不断发展和完善,我们可以期待看到更多基于Whisper Streaming的创新应用,如实时会议转录、多语言直播翻译等。对于开发者和研究者而言,深入研究和贡献Whisper Streaming项目不仅可以提升个人技能,还能为推动语音识别技术的进步做出贡献。
最后,我们鼓励读者亲自尝试Whisper Streaming项目,体验其强大的实时转录能力。无论是用于个人学习、研究还是开发实际应用,Whisper Streaming都是一个值得关注和探索的优秀工具。
🔗 项目链接: Whisper Streaming GitHub仓库
📧 联系方式: 如有任何问题或建议,请联系项目负责人Dominik Macháček (machacek@ufal.mff.cuni.cz)
让我们共同期待Whisper Streaming项目在实时语音处理领域带来的更多突破和创新!
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号