Vidur: 微软推出的大规模LLM推理模拟框架

RayRay
VidurLLM推理模拟器系统性能模型支持GPU配置Github开源项目

Vidur:微软推出的大规模LLM推理模拟框架

Vidur Chrome Trace

在人工智能和机器学习领域,大语言模型(LLM)的发展日新月异。然而,这些模型的规模和复杂性也带来了巨大的计算资源需求和系统优化挑战。为了帮助研究人员和工程师更好地应对这些挑战,微软近日推出了一个名为Vidur的大规模LLM推理模拟框架。

Vidur的主要特点和功能

Vidur是一个高度精确和可扩展的LLM推理模拟器,具有以下主要特点和功能:

  1. 容量规划:帮助用户为LLM部署找到最佳的配置方案。

  2. 研究测试:可以用于测试新的调度算法、推测解码等优化技术。

  3. 性能研究:研究不同工作负载和配置下模型的系统性能表现。

  4. 低资源需求:除了初始的快速分析阶段,无需访问实际的GPU资源。

  5. 高度精确:采用实验分析和预测建模相结合的方法,模拟LLM操作的性能。

  6. 易于扩展:框架设计灵活,可以方便地添加新的模型和硬件支持。

Vidur的这些特性使其成为LLM研究和部署领域的强大工具,可以大大降低相关工作的门槛和成本。

Vidur支持的模型和硬件

目前,Vidur支持多种主流的LLM模型,包括:

  • Meta的Llama系列模型(Llama-2-7B、Llama-2-70B等)
  • CodeLlama-34B
  • InternLM-20B
  • Qwen-72B

在硬件方面,Vidur支持以下几种GPU配置:

  • A100 80GB DGX
  • H100 DGX
  • 4xA100 80GB Pairwise NVLink Node
  • 8xA40 Pairwise NVLink Node

Vidur还支持张量并行(TP)和流水线并行(PP)等并行计算技术。例如,用户可以在4xA100 80GB Pairwise NVLink节点上以TP2-PP2的配置运行LLaMA2-70B模型。

Vidur的使用方法

使用Vidur进行模拟非常简单,主要包括以下几个步骤:

  1. 环境配置:可以使用mamba、venv或conda创建所需的Python环境。

  2. 安装依赖:使用提供的requirements.txt文件安装必要的依赖包。

  3. 运行模拟:通过命令行参数配置模拟场景,然后运行主程序。

例如,以下命令可以运行一个简单的模拟:

python -m vidur.main \ --replica_config_device a100 \ --replica_config_model_name meta-llama/Llama-2-7b-hf \ --cluster_config_num_replicas 1 \ --replica_config_tensor_parallel_size 1 \ --replica_config_num_pipeline_stages 1 \ --request_generator_config_type synthetic \ --length_generator_config_type trace \ --interval_generator_config_type static \ --synthetic_request_generator_config_num_requests 128 \ --replica_scheduler_config_type vllm

用户可以根据需要调整各种参数,以模拟不同的场景和配置。

Vidur的输出和分析

Vidur的模拟结果主要包括两部分:

  1. 性能指标:会直接记录到wandb平台,同时也会保存在本地的simulator_output目录中。这些指标涵盖了吞吐量、延迟、GPU利用率等多个方面。

  2. Chrome跟踪:每次模拟都会生成一个Chrome跟踪文件,保存在simulator_output目录中。用户可以通过Chrome浏览器的tracing功能可视化这些跟踪,直观地了解模型推理过程中的各种事件和时间分布。

通过分析这些输出,研究人员和工程师可以深入了解LLM在不同场景下的性能表现,为进一步的优化和决策提供依据。

Vidur的开源和社区贡献

作为一个开源项目,Vidur欢迎来自社区的贡献。微软采用了标准的开源贡献流程,包括签署贡献者许可协议(CLA)等步骤。项目遵循Microsoft开源行为准则,鼓励友好、包容的社区氛围。

对于希望为Vidur添加新模型或硬件支持的贡献者,项目文档中提供了详细的指南。这种开放的态度有助于Vidur不断扩展其功能,跟上LLM领域的最新发展。

结语

Vidur的推出,为LLM研究和部署领域带来了一个强大而灵活的工具。它不仅可以帮助研究人员更高效地进行实验和创新,也能帮助工程师更好地规划和优化LLM的实际部署。随着LLM技术的不断发展,像Vidur这样的模拟工具将在推动整个领域进步中发挥越来越重要的作用。

我们可以期待,在开源社区的共同努力下,Vidur会支持更多的模型和硬件配置,提供更精确的模拟结果,最终为LLM的广泛应用铺平道路。无论是学术研究还是工业应用,Vidur都将是一个值得关注和使用的重要工具。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星��火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多