
随着移动互联网和物联网的快速发展,移动边缘计算(MEC)作为一种新兴的计算范式受到了广泛关注。MEC通过将计算资源部署在网络边缘,可以为用户提供低延迟、高带宽的计算服务。然而,传统的固定式MEC服务器部署方式缺乏灵活性,难以满足动态变化的用户需求。
无人机(UAV)凭借其灵活的机动性和低成本的特点,为MEC提供了新的发展方向。无人机可以作为一种移动的MEC服务器,根据用户分布情况灵活调整位置,为用户提供就近的计算卸载服务。但是,如何在动态环境中实现无人机辅助MEC系统的计算卸载优化,是一个具有挑战性的问题。
本文提出了一种基于深度确定性策略梯度(DDPG)的无人机辅助MEC任务卸载优化算法。该算法通过联合优化用户调度、任务卸载比例、无人机飞行角度和速度,在考虑离散变量和能量消耗约束的情况下,最小化系统的最大处理延迟。实验结果表明,该算法可以快速收敛到最优解,并且相比于基准算法(如深度Q网络)在处理延迟方面取得了显著改善。
我们考虑一个无人机辅助的MEC系统,包含一个配备计算资源的无人机和多个用户设备(UE)。UE可以将部分计算任务卸载到无人机上执行,剩余任务在本地执行。系统的目标是最小化所有UE的最大处理延迟。
系统的主要参数包括:
DDPG算法属于Actor-Critic框架下的深度强化学习算法,可以处理连续动作空间的问题。其主要组成部分包括:
算法的主要流程如下:
系统的状态空间包括:
系统的动作空间包括:
奖励函数的设计直接影响算法的性能。我们的奖励函数主要考虑以下因素:
具体的奖励函数设计如下:
reward = -max_delay - energy_penalty + task_completion_reward - constraint_violation_penalty
其中各项的权重需要根据具体应用场景进行调整。
我们在Python环境下使用TensorFlow框架实现了UAV-DDPG算法,并与DQN等基准算法进行了对比实验。主要的评价指标包括:
实验的主要参数设置如下:
上图展 示了UAV-DDPG算法与DQN、随机策略在平均处理延迟上的对比。可以看出:
我们还对算法的收敛速度进行了分析。实验结果表明:
这些结果说明UAV-DDPG算法具有更快的学习速度和更好的收敛性能。
在能量效率方面,UAV-DDPG算法也表现出明显优势:
本文提出的UAV-DDPG算法为无人机辅助MEC系统的任务卸载优化提供了一种有效的解决方案。该算法能够在动态复杂环境中快速学习最优策略,显著降低系统的处理延迟和能量消耗。实验结果验证了算法的优越性能。
未来的研究方向包括:
总的来说,基于深度强化学习的无人机辅助MEC优化是一个极具前景的研究方向,有望为未来的智能通信系统带来革命性的变革。
[1] Wang Y, Fang W, Ding Y, et al. Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach[J]. Wireless Networks, 2021, 27(4): 2991-3006.
[2] Mao Y, You C, Zhang J, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[3] Liu Y, Xiong K, Ni Q, et al. A discrete network utility maximization framework for coordinated UAV-assisted emergency communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2874-2890.
[4] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.
[5] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号