TinyEngine: 高效的微控制器深度学习推理引擎

RayRay
TinyEngine微控制器深度学习内存优化推理加速Github开源项目

TinyEngine: 让微控制器也能高效运行深度学习

在物联网(IoT)和边缘计算时代,微控制器因其低成本、低功耗的特性被广泛应用。然而,微控制器有限的内存和计算资源一直是制约深度学习在其上部署的主要瓶颈。MIT韩松实验室开发的TinyEngine正是为解决这一难题而生,它通过一系列创新技术,让深度学习模型能够在资源受限的微控制器上高效运行。

TinyEngine的核心优势

TinyEngine是MCUNet框架的关键组成部分,专门针对微控制器设计了多项内存管理和计算优化技术:

  1. 原位深度卷积:通过巧妙的数据布局,直接用中间结果覆盖输入数据,大幅降低峰值内存使用。

  2. 基于补丁的推理:将大尺寸特征图分割成小块进行计算,显著减少内存占用。

  3. 算子融合:将多个相邻算子合并执行,减少内存访问开销。

  4. SIMD并行计算:充分利用微控制器的SIMD指令,提高计算效率。

  5. 内存格式优化:针对不同算子选择最优的数据排布,提升缓存命中率。

  6. 循环优化:包括循环重排、展开和平铺等技术,加速计算过程。

通过这些技术,TinyEngine相比现有方案如TensorFlow Lite Micro、CMSIS-NN等,在推理速度和内存使用上都实现了显著提升。

TinyEngine优化效果

如上图所示,在多个基准模型上,TinyEngine将推理速度提升了1.1-18.6倍,同时将峰值内存减少了1.3-3.6倍。这意味着更复杂的深度学习模型现在可以在低端微控制器上运行,极大拓展了微控制器的AI应用场景。

基于补丁的推理技术

TinyEngine的一大创新是基于补丁的推理技术。传统的层级推理方式需要一次性分配整个特征图的内存,而基于补丁的推理将特征图分割成小块,每次只处理一小块区域,从而大幅降低了内存需求。

基于补丁的推理示意图

以MobileNetV2为例,采用基于补丁的推理可以将峰值内存减少8倍:

MobileNetV2内存优化效果

这项技术使得TinyEngine能够在相同内存预算下实现更高的模型精度:

ImageNet分类精度对比

TinyEngine的应用示例

TinyEngine已经在多个微控制器AI应用中得到验证。比如在视觉唤醒词(VWW)任务中,TinyEngine支持在STM32系列微控制器上部署和运行相关模型:

VWW演示

除了推理,TinyEngine还支持在微控制器上进行模型训练。以下是在OpenMV Cam H7上进行在线学习的演示:

在线学习演示

这些应用展示了TinyEngine在实际场景中的强大功能,为物联网设备赋予了更强大的AI能力。

TinyEngine的技术细节

TinyEngine主要包含以下几个核心模块:

  1. 代码生成器:将神经网络编译为底层C/C++代码。
  2. 运行时库:实现各类算子,支持微控制器上的模型推理。
  3. 示例代码:展示如何将TFLite模型转换为TinyEngine模型。
  4. 教程:包含推理和训练的演示教程。

使用TinyEngine需要Python 3.6+和STM32CubeIDE 1.5+环境。用户可以通过以下步骤快速上手:

git clone --recursive https://github.com/mit-han-lab/tinyengine.git conda create -n tinyengine python=3.6 pip conda activate tinyengine pip install -r requirements.txt

TinyEngine提供了详细的推理教程训练教程,帮助开发者快速将模型部署到微控制器上。

TinyEngine的影响力

TinyEngine作为MCUNet项目的重要组成部分,已经在学术界和工业界产生了广泛影响。相关研究成果连续三年入选神经信息处理系统会议(NeurIPS),并得到了MIT官方新闻、WIRED等多家媒体的报道。

TinyEngine的成功标志着微控制器AI的一个重要里程碑。它不仅大幅提升了现有模型的性能,更重要的是为未来更复杂的AI应用铺平了道路。随着物联网和边缘计算的快速发展,TinyEngine有望在智能家居、可穿戴设备、工业物联网等众多领域发挥重要作用。

总结与展望

TinyEngine通过深度优化解决了微控制器上运行深度学习模型的关键挑战,为物联网时代的AI应用开辟了新的可能。它不仅是一个技术创新,更代表了将复杂AI能力下放到端侧设备的重要趋势。

未来,随着硬件性能的提升和算法的进一步优化,我们有理由相信微控制器上的AI应用将变得更加普及和强大。TinyEngine作为这一领域的先驱者,正在为这一美好未来贡献自己的力量。

对于开发者而言,TinyEngine提供了一个强大而易用的工具,让将AI引入资源受限设备变得触手可及。无论是在学术研究还是产品开发中,TinyEngine都值得深入探索和应用。

让我们共同期待TinyEngine和微控制器AI的美好未来!

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多