TensorRT-LLM 后端: 在 Triton 推理服务器上高效部署大型语言模型

RayRay
TensorRT-LLMTriton推理服务GPU深度学习Github开源项目

TensorRT-LLM 后端简介

TensorRT-LLM 后端是一个专门为 Triton 推理服务器设计的后端,旨在高效部署和服务 TensorRT-LLM 模型。它结合了 NVIDIA TensorRT 的高性能深度学习推理能力和 TensorRT-LLM 框架对大型语言模型的优化,为开发者提供了一个强大的工具来部署最新的 LLM 模型。

主要特性

  • 支持多种并行技术,包括张量并行、流水线并行和专家并行
  • 提供 inflight batching 和 paged attention 等优化技术
  • 支持多种解码策略,如 Top-k、Top-p、Beam Search 等
  • 支持模型量化,可以显著降低内存占用和提高推理速度
  • 多实例和多节点部署支持,可以充分利用硬件资源
  • 与 Triton 无缝集成,提供统一的推理 API 和管理界面

快速入门

要开始使用 TensorRT-LLM 后端,您可以按照以下步骤操作:

  1. 更新 TensorRT-LLM 子模块:
git clone -b v0.11.0 https://github.com/triton-inference-server/tensorrtllm_backend.git cd tensorrtllm_backend git submodule update --init --recursive git lfs install git lfs pull
  1. 启动 Triton TensorRT-LLM 容器:
docker run --rm -it --net host --shm-size=2g \ --ulimit memlock=-1 --ulimit stack=67108864 --gpus all \ -v </path/to/tensorrtllm_backend>:/tensorrtllm_backend \ -v </path/to/engines>:/engines \ nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
  1. 准备 TensorRT-LLM 引擎:

可以使用 TensorRT-LLM 提供的脚本来转换和构建模型引擎。以 GPT-2 模型为例:

cd /tensorrtllm_backend/tensorrt_llm/examples/gpt # 下载权重 rm -rf gpt2 && git clone https://huggingface.co/gpt2-medium gpt2 pushd gpt2 && rm pytorch_model.bin model.safetensors && wget -q https://huggingface.co/gpt2-medium/resolve/main/pytorch_model.bin && popd # 转换检查点 python3 convert_checkpoint.py --model_dir gpt2 \ --dtype float16 \ --tp_size 4 \ --output_dir ./c-model/gpt2/fp16/4-gpu # 构建 TensorRT 引擎 trtllm-build --checkpoint_dir ./c-model/gpt2/fp16/4-gpu \ --gpt_attention_plugin float16 \ --remove_input_padding enable \ --paged_kv_cache enable \ --gemm_plugin float16 \ --output_dir /engines/gpt/fp16/4-gpu
  1. 准备模型仓库:
mkdir /triton_model_repo cp -r /tensorrtllm_backend/all_models/inflight_batcher_llm/* /triton_model_repo/
  1. 修改模型配置:

使用提供的脚本填充模型配置文件中的参数:

ENGINE_DIR=/engines/gpt/fp16/4-gpu TOKENIZER_DIR=/tensorrtllm_backend/tensorrt_llm/examples/gpt/gpt2 MODEL_FOLDER=/triton_model_repo TRITON_MAX_BATCH_SIZE=4 INSTANCE_COUNT=1 MAX_QUEUE_DELAY_MS=0 MAX_QUEUE_SIZE=0 FILL_TEMPLATE_SCRIPT=/tensorrtllm_backend/tools/fill_template.py DECOUPLED_MODE=false python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/ensemble/config.pbtxt triton_max_batch_size:${TRITON_MAX_BATCH_SIZE} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/preprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},preprocessing_instance_count:${INSTANCE_COUNT} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},engine_dir:${ENGINE_DIR},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MS},batching_strategy:inflight_fused_batching,max_queue_size:${MAX_QUEUE_SIZE} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/postprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},postprocessing_instance_count:${INSTANCE_COUNT},max_queue_size:${MAX_QUEUE_SIZE} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/tensorrt_llm_bls/config.pbtxt triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},bls_instance_count:${INSTANCE_COUNT}
  1. 启动 Triton 服务:
python3 /tensorrtllm_backend/scripts/launch_triton_server.py --world_size=4 --model_repo=${MODEL_FOLDER}
  1. 发送推理请求:

可以使用 curl 命令或提供的客户端脚本来发送推理请求:

curl -X POST localhost:8000/v2/models/ensemble/generate -d '{"text_input": "What is machine learning?", "max_tokens": 20, "bad_words": "", "stop_words": ""}'

高级特性

多实例支持

TensorRT-LLM 后端支持两种多实例运行模式:

  1. Leader 模式: 为每个 GPU 生成一个 Triton 服务器进程,其中 rank 0 进程作为leader。
  2. Orchestrator 模式: 生成一个作为协调器的 Triton 服务器进程,然后为每个模型需要的 GPU 生成一个 Triton 服务器进程。

多节点支持

TensorRT-LLM 后端支持跨多个节点部署模型,可以充分利用分布式计算资源。

模型并行

支持张量并行、流水线并行和专家并行等多种并行技术,可以有效地将大型模型分布在多个 GPU 上。

解码策略

提供多种解码策略,包括 Top-k、Top-p、Beam Search 和 Medusa 等,可以根据需求选择最适合的生成方式。

量化支持

支持多种量化技术,如 INT8、INT4 等,可以显著减小模型大小并提高推理速度。

结论

TensorRT-LLM 后端为在 Triton 推理服务器上部署大型语言模型提供了一个强大而灵活的解决方案。通过结合 TensorRT 的高性能推理能力和 TensorRT-LLM 的优化技术,它能够实现高效的模型服务。无论是单机多 GPU 还是多节点部署,TensorRT-LLM 后端都能够提供出色的性能和可扩展性。对于需要在生产环境中部署最新 LLM 模型的开发者和企业来说,TensorRT-LLM 后端是一个值得考虑的选择。

TensorRT-LLM Backend Architecture

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多