TensorRT-LLM 后端是一个专门为 Triton 推理服务器设计的后端,旨在高效部署和服务 TensorRT-LLM 模型。它结合了 NVIDIA TensorRT 的高性能深度学习推理能力和 TensorRT-LLM 框架对大型语言模型的优化,为开发者提供了一个强大的工具来部署最新的 LLM 模型。
要开始使用 TensorRT-LLM 后端,您可以按照以下步骤操作:
git clone -b v0.11.0 https://github.com/triton-inference-server/tensorrtllm_backend.git cd tensorrtllm_backend git submodule update --init --recursive git lfs install git lfs pull
docker run --rm -it --net host --shm-size=2g \ --ulimit memlock=-1 --ulimit stack=67108864 --gpus all \ -v </path/to/tensorrtllm_backend>:/tensorrtllm_backend \ -v </path/to/engines>:/engines \ nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
可以使用 TensorRT-LLM 提供的脚本来转换和构建模型引擎。以 GPT-2 模型为例:
cd /tensorrtllm_backend/tensorrt_llm/examples/gpt # 下载权重 rm -rf gpt2 && git clone https://huggingface.co/gpt2-medium gpt2 pushd gpt2 && rm pytorch_model.bin model.safetensors && wget -q https://huggingface.co/gpt2-medium/resolve/main/pytorch_model.bin && popd # 转换检查点 python3 convert_checkpoint.py --model_dir gpt2 \ --dtype float16 \ --tp_size 4 \ --output_dir ./c-model/gpt2/fp16/4-gpu # 构建 TensorRT 引擎 trtllm-build --checkpoint_dir ./c-model/gpt2/fp16/4-gpu \ --gpt_attention_plugin float16 \ --remove_input_padding enable \ --paged_kv_cache enable \ --gemm_plugin float16 \ --output_dir /engines/gpt/fp16/4-gpu
mkdir /triton_model_repo cp -r /tensorrtllm_backend/all_models/inflight_batcher_llm/* /triton_model_repo/
使用提供的脚本填充模型配置文件中的参数:
ENGINE_DIR=/engines/gpt/fp16/4-gpu TOKENIZER_DIR=/tensorrtllm_backend/tensorrt_llm/examples/gpt/gpt2 MODEL_FOLDER=/triton_model_repo TRITON_MAX_BATCH_SIZE=4 INSTANCE_COUNT=1 MAX_QUEUE_DELAY_MS=0 MAX_QUEUE_SIZE=0 FILL_TEMPLATE_SCRIPT=/tensorrtllm_backend/tools/fill_template.py DECOUPLED_MODE=false python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/ensemble/config.pbtxt triton_max_batch_size:${TRITON_MAX_BATCH_SIZE} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/preprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},preprocessing_instance_count:${INSTANCE_COUNT} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},engine_dir:${ENGINE_DIR},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MS},batching_strategy:inflight_fused_batching,max_queue_size:${MAX_QUEUE_SIZE} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/postprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},postprocessing_instance_count:${INSTANCE_COUNT},max_queue_size:${MAX_QUEUE_SIZE} python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/tensorrt_llm_bls/config.pbtxt triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},bls_instance_count:${INSTANCE_COUNT}
python3 /tensorrtllm_backend/scripts/launch_triton_server.py --world_size=4 --model_repo=${MODEL_FOLDER}
可以使用 curl 命令或提供的客户端脚本来发送推理请求:
curl -X POST localhost:8000/v2/models/ensemble/generate -d '{"text_input": "What is machine learning?", "max_tokens": 20, "bad_words": "", "stop_words": ""}'
TensorRT-LLM 后端支持两种多实例运行模式:
TensorRT-LLM 后端支持跨多个节点部署模型,可以充分利用分布式计算资源。
支持张量并行、流水线并行和专家并行等多种并行技术,可以有效地将大型模型分布在多个 GPU 上。
提供多种解码策略,包括 Top-k、Top-p、Beam Search 和 Medusa 等,可以根据需求选择最适合的生成方式。
支持多种量化技术,如 INT8、INT4 等,可以显著减小模型大小并提高推理速度。
TensorRT-LLM 后端为在 Triton 推理服务器上部署大型语言模型提供了一个强大而灵活的解决方案。通过结合 TensorRT 的高性能推理能力和 TensorRT-LLM 的优化技术,它能够实现高效 的模型服务。无论是单机多 GPU 还是多节点部署,TensorRT-LLM 后端都能够提供出色的性能和可扩展性。对于需要在生产环境中部署最新 LLM 模型的开发者和企业来说,TensorRT-LLM 后端是一个值得考虑的选择。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、 专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科 大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作 解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号