在当今大数据和人工智能快速发展的时代,如何高效地处理和加载海量数据集已成为机器学习领域面临的一大挑战。为了解决这一问题,MosaicML团队开发了StreamingDataset - 一个革命性的数据流式传输库,旨在为大规模神经网络训练提供最快、最经济、最具可扩展性的数据加载解决方案。
StreamingDataset的设计理念是让训练过程变得更加简单高效,无论训练数据位于何处,都能实现数据的按需流式传输。这一创新技术不仅大大提升了训练效率,还为研究人员和开发者提供了更大的灵活性。本文将深入探讨StreamingDataset的核心特性、使用方法以及它在机器学习领域的重要应用。
StreamingDataset的一大亮点是其强大的数据混合能力。通过Stream类,用户可以轻松地实现不同数据集的混合,并精确控制每个数据集的采样比例。这种灵活的数据混合机制为研究人员提供了进行各种实验的可能性,使得模型训练更加多样化和高效。
例如,用户可以这样混合不同的数据集:
streams = [ Stream(remote='s3://datasets/c4', proportion=0.4), Stream(remote='s3://datasets/github', proportion=0.1), Stream(remote='gcs://datasets/my_internal', proportion=0.5), ] dataset = StreamingDataset( streams=streams, samples_per_epoch=1e8, )
这种方式允许研究人员灵活地组合和调整不同数据源的比例,从而优化模型的训练效果。
StreamingDataset的另一个突出特性是其真正的确定性。无论使用多少GPU、节点或CPU工作线程,数据样本的顺序都保持一致。这一特性带来了多方面的好处:

如图所示,无论在1、8、16、32还是64个GPU上训练,模型都能得到完全相同的损失曲线,这充分证明了StreamingDataset的确定性特性。
在长时间的训练过程中,硬件故障或意外中断是常见的问题。传统的数据加载方式可能需要花费大量时间重新加载数据。而StreamingDataset凭借其确定性的样本排序,能够在几秒钟内恢复训练,而不是几小时。
这一特性不仅节省 了宝贵的时间,还大大减少了因数据重新加载而产生的额外成本,如云存储的出口费用和GPU的空闲时间。对于大规模训练项目而言,这可以节省数千美元的开支。
StreamingDataset采用了高效的MDS格式,最大限度地减少了不必要的处理工作,从而实现了超低的样本延迟和更高的吞吐量。在数据加载成为瓶颈的工作负载中,StreamingDataset的性能优势尤为明显。
以下是ImageNet + ResNet-50训练的性能对比:
| 工具 | 吞吐量 |
|---|---|
| StreamingDataset | ~19000 img/sec |
| ImageFolder | ~18000 img/sec |
| WebDataset | ~16000 img/sec |
这些数据清楚地表明,StreamingDataset在数据加载效率方面具有显著优势。
尽管StreamingDataset采用了流式传输的方式,但它并未牺牲模型的收敛性能。事实上,使用StreamingDataset训练的模型能够达到与使用本地磁盘数据相当的收敛效果。这要归功于其先进的数据打乱算法。

下面是ImageNet + ResNet-50训练的Top-1准确率对比:
| 工具 | Top-1准确率 |
|---|---|
| StreamingDataset | 76.51% +/- 0.09 |
| ImageFolder | 76.57% +/- 0.10 |
| WebDataset | 76.23% +/- 0.17 |
这些数据充分证明,StreamingDataset不仅提高了数据加载的效率,还能确保模型达到最佳的训练效果。
StreamingDataset提供了强大的随机访问能力。即使某个样本尚未下载,用户也可以通过dataset[i]直接访问第i个样本。系统会立即启 动下载,并在完成后返回结果。这种类似于PyTorch map-style数据集的访问方式,为研究人员提供了更大的灵活性。
dataset = StreamingDataset(...) sample = dataset[19543]
与一些要求数据集大小必须能被设备数量整除的解决方案不同,StreamingDataset可以轻松处理任意数量的样本。它通过智能的样本重复机制,确保每个设备处理相同数量的样本,而不会丢弃任何数据。
dataset = StreamingDataset(...) dl = DataLoader(dataset, num_workers=...)
为了适应不同的硬件环境,StreamingDataset提供了磁盘使用限制功能。用户可以通过设置cache_limit参数,动态删除最近最少使用的数据分片,以保持磁盘使用量在指定限制之下。
dataset = StreamingDataset( cache_limit='100gb', ... )
StreamingDataset已在多个重要的 机器学习项目中得到应用,展现出其强大的实力:
这些项目充分展示了StreamingDataset在各种机器学习任务中的广泛应用和卓越表现。
要开始使用StreamingDataset,首先需要安装它:
pip install mosaicml-streaming
然后,按照以下步骤使用:
from torch.utils.data import DataLoader from streaming import StreamingDataset remote = 's3://my-bucket/path-to-dataset' local = '/tmp/path-to-dataset' dataset = StreamingDataset(local=local, remote=remote, shuffle=True) dataloader = DataLoader(dataset)
StreamingDataset为大规模机器学习模型训练提供了一个革命性的数据加载解决方案。它不仅提高了训练效率,还为研究人员和开发者提供了更大的灵活性和可能性。随着人工智能和大数据技术的不断发展,StreamingDataset无疑将在未来的机器学习项目中扮演越来越重要的角色。
无论您是研究人员、开发者还是机器学习爱好者,StreamingDataset都值得您深入探索和尝试。它不仅能够提升您的工作效率,还能为您的项目带来新的可能性。让我们共同期待StreamingDataset在机器学习领域带来更多的创新和突破!


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号