在许多实际的自然语言处理(NLP)场景中,标注数据仍然是一种稀缺资源。特别是当我们处理资源匮乏的语言或文本领域,或者使用没有预先存在数据集的特定任务标签时,这一问题尤为突出。通常情况下,唯一可行的选择就是手动收集和标注文本,这不仅耗时而且昂贵。
为了解决这一棘手问题,一个名为skweak的创新工具应运而生。skweak是一个基于Python的软件工具包,它为NLP任务提供了一个具体而有效的弱监督学习解决方案。
skweak的核心理念非常简单:不再手动标注文本,而是定义一组"标注函数"来自动标注文档,然后将这些函数的结果进行聚合,从而得到语料库的标注版本。这种方法不仅大大减少了人工标注的工作量,还能利用各种知识源来提高标注质量。
skweak支持多种形式的标注函数,包括:
这种灵活性使得开发人员可以根据具体任务和领域的需求,设计最适合的标注策略。
skweak采用了一种统计模型来聚合各个标注函数的结果。这个模型能够通过比较不同函数的预测结果,自动估计每个标注函数的相对准确率和可能存在的混淆。这种智能聚合机制可以有效地解决不同标注函数之间可能存在的冲突,从而得到更加可靠的最终标注。
skweak可以应用于序列标注和文本分类等多种NLP任务。它提供了一个完整的API,使得创建、应用和聚合标注函数只需几行代码就能完成。此外,skweak还与流行的NLP库SpaCy紧密集成,可以轻松地融入现有的NLP流程中。

准备数据: 首先,你需要从你的文本领域获取原始(未标注)数据。skweak基于SpaCy构建,使用SpaCy的Doc对象,因此你需要先将文档转换为Doc对象。
定义标注函数: 接下来,定义一系列标注函数,这些函数将对文档进行处理并用标签标注跨度。标注函数可以来自启发式规则、词表、机器学习模型等。
聚合结果: 将标注函数应用到语料库后,需要聚合它们的结果,以获得单一的标注层。skweak使用一个生成模型来自动估计每个标注函数的相对准确率和可能的混淆。
训练最终模型: 基于聚合的标签,你可以训练最终的机器学习模型。这个标注语料库概率性地聚合了所有标注函数的输出,你可以使用它来估计任何类型的机器学习模型。
以下是一个简单的示例,展示了如何使用skweak定义三个标注函数并应用于单个文档:
import spacy, re from skweak import heuristics, gazetteers, generative, utils # LF 1: 检测MONEY实体的启发式规则 def money_detector(doc): for tok in doc[1:]: if tok.text[0].isdigit() and tok.nbor(-1).is_currency: yield tok.i-1, tok.i+1, "MONEY" lf1 = heuristics.FunctionAnnotator("money", money_detector) # LF 2: 使用正则表达式检测年份 lf2= heuristics.TokenConstraintAnnotator("years", lambda tok: re.match("(19|20)\d{2}$", tok.text), "DATE") # LF 3: 使用包含几个名字的词表 NAMES = [("Barack", "Obama"), ("Donald", "Trump"), ("Joe", "Biden")] trie = gazetteers.Trie(NAMES) lf3 = gazetteers.GazetteerAnnotator("presidents", {"PERSON":trie}) # 创建一个语料库(这里只有一个文本) nlp = spacy.load("en_core_web_sm") doc = nlp("Donald Trump paid $750 in federal income taxes in 2016") # 应用标注函数 doc = lf3(lf2(lf1(doc))) # 创建并拟合HMM聚合模型 hmm = generative.HMM("hmm", ["PERSON", "DATE", "MONEY"]) hmm.fit([doc]*10) # 拟合后,我们简单地应用模型来聚合所有函数 doc = hmm(doc) # 然后我们可以在Jupyter中可视化最终结果 utils.display_entities(doc, "hmm")
这个例子展示了skweak的基本用法,但要充分发挥skweak的潜力,你需要更多的标注函数和更大的语料库。这样模型才能更好地估计每个标注函数的相对准确率。
减少人工标注: skweak通过自动化标注过程,大大减少了手动标注的需求,从而节省时间和成本。
灵活性: 支持多种类型的标注函数,可以根据具体任务和领域定制标注策略。
智能聚合: 使用统计模型自动估计标注函数的准确率,有效处理冲突。
易于集成: 与SpaCy紧密集成,可以轻松融入现有NLP流程。
适用性广: 可用于序列标注和文本分类等多种NLP任务。
简单易用: 提供简洁的API,只需几行代码即可完成复杂的标注任务。
skweak可以通过pip轻松安装:
pip install skweak
主要依赖包括:
使用Python版本需要 >= 3.6。
skweak为NLP开发人员提供了一个强大而灵活的工具,使得弱监督学习在自然语言处理任务中的应用变得简单易行。通过减少对大量手动标注数据的依赖,skweak可以显著加速NLP项目的开发周期,同时保持较高的模型性能。无论是处理资源匮乏的语言、特定领域的文本,还是没有现成数据集的新任务,skweak都能提供一个有效的解决方案。
随着NLP技术的不断发展和应用领域的不断拓展,像skweak这样的工具将在未来扮演越来越重要的角色,助力研究人员和开发者更高效地构建和优化NLP模型。尽管skweak目前已不再积极维护,但其核心理念和方法仍然具有重要的参考价值,相信会继续影响和启发NLP领域的创新。
📚 欢迎访问skweak的GitHub仓库以了解更多详情,并在您的下一个NLP项目中尝试使用skweak,体验弱监督学习带来的便利与效率提升。


AI一 键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业 专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分 析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号