RAG技术综述:检索增强生成在人工智能内容生成中的应用与发展

RayRay
RAGRetrieval-Augmented GenerationAI生成内容大型语言模型知识增强Github开源项目

RAG-Survey

RAG技术综述:检索增强生成在人工智能内容生成中的应用与发展

近年来,随着大型语言模型(LLMs)的快速发展,检索增强生成(Retrieval-Augmented Generation, RAG)技术作为一种有效提升AI生成内容质量的方法,受到了学术界和工业界的广泛关注。本文将全面介绍RAG技术的基本原理、最新进展以及在多个领域的应用,为读者提供RAG技术的系统性概览。

RAG技术概述

检索增强生成(RAG)是一种将检索方法与深度学习相结合的技术,旨在克服大型语言模型静态知识的局限性,通过整合外部动态信息来提高模型的准确性和可靠性。RAG主要针对文本领域,通过利用真实世界的数据来减少LLMs生成看似合理但实际错误的回答,从而提高其准确性和可靠性。

RAG的基本工作流程可以分为四个关键阶段:

  1. 预检索(Pre-retrieval)
  2. 检索(Retrieval)
  3. 后检索(Post-retrieval)
  4. 生成(Generation)

这种结构化的框架不仅整合了现有的RAG研究,还阐明了其技术基础,突出了RAG在扩展LLMs适应性和应用范围方面的潜力。

RAG的基础架构

RAG的基础架构主要包括以下几个方面:

  1. 基于查询的RAG
  2. 基于潜在表示的RAG
  3. 基于logit的RAG
  4. 推测性RAG

基于查询的RAG

基于查询的RAG是最常见的RAG形式,它通过直接使用输入查询来检索相关信息。代表性工作包括REALM、Self-RAG等。这种方法简单直接,但可能受限于查询的表达能力。

基于潜在表示的RAG

基于潜在表示的RAG通过学习输入的潜在表示来进行检索,可以捕捉更丰富的语义信息。如EditSum、RACE等工作都采用了这种方法。这种方法可以更好地处理复杂的语义关系,但可能需要更多的计算资源。

基于logit的RAG

基于logit的RAG直接在模型的输出层(logit)上进行检索和融合。代表性工作如kNN-LM等。这种方法可以更直接地影响模型的输出,但可能会影响模型的泛化能力。

推测性RAG

推测性RAG是一种新兴的RAG形式,它通过预测可能的输出来优化检索过程。如REST、GPTCache等工作都探索了这一方向。这种方法可以提高RAG的效率,但可能会增加系统的复杂性。

RAG的增强方法

为了进一步提升RAG的性能,研究者们提出了多种增强方法,主要包括:

  1. 输入增强
  2. 检索器增强
  3. 生成器增强
  4. 结果增强
  5. RAG流程增强

输入增强

输入增强主要包括查询转换和数据增强两个方面。查询转换旨在改善原始查询,使其更适合检索任务,如Query2doc、Tree of Clarifications等工作。数据增强则通过扩充训练数据来提升模型性能,如LESS、Make-An-Audio等研究。

检索器增强

检索器增强是RAG研究中最活跃的方向之一,包括递归检索、块优化、微调检索器、混合检索、重排序等多个子方向。例如,LlamaIndex提出了块优化的方法,BGE M3-Embedding探索了多语言、多功能、多粒度的文本嵌入。

生成器增强

生成器增强主要包括提示工程、解码调优和微调生成器三个方面。提示工程如Chain-of-Thought Prompting等工作,旨在通过优化提示来提升生成质量。解码调优和微调生成器则直接作用于模型本身,如InferFix、CodeGen等研究。

结果增强

结果增强主要关注如何改进RAG的输出结果,如通过重写输出来提高生成内容的质量和准确性。代表性工作包括Automated Code Editing with Search-Generate-Modify等。

RAG流程增强

RAG流程增强旨在从整体上优化RAG的工作流程,主要包括自适应检索和迭代式RAG两个方向。自适应检索如Self-RAG、Adaptive-RAG等工作,试图根据输入的复杂度动态调整检索策略。迭代式RAG如RepoCoder等,通过多轮检索和生成来逐步改善输出质量。

RAG的应用领域

RAG技术已经在多个领域展现出了巨大的潜力,主要应用包括:

  1. 文本领域
  2. 代码领域
  3. 多模态领域

文本领域应用

在文本领域,RAG主要应用于问答系统、对话系统、文本摘要和机器翻译等任务。例如,REALM和Atlas等工作在开放域问答任务上取得了显著进展。在对话系统方面,如Unims-rag等研究探索了多源检索增强的个性化对话系统。

代码领域应用

在代码领域,RAG技术被广泛应用于代码生成、代码摘要、代码翻译和程序修复等任务。如ReACC提出了一个基于检索的代码补全框架,InferFix则探索了基于LLM的端到端程序修复方法。

多模态领域应用

在多模态领域,RAG技术在图像生成、视频生成、音频生成等方面都有应用。例如,Re-imagen提出了一种基于检索的文本到图像生成器,Animate-A-Story则探索了基于检索增强的视频生成方法用于讲故事。

未来展望

尽管RAG技术已经取得了显著进展,但仍然存在一些挑战和机遇:

  1. 检索效率和准确性的进一步提升
  2. 多模态RAG技术的深入研究
  3. RAG在特定领域知识应用的探索
  4. RAG与其他AI技术的融合,如强化学习、联邦学习等
  5. RAG在大规模实际应用中的部署和优化

随着研究的深入和技术的发展,我们可以期待RAG在提升AI系统的知识获取、推理能力和生成质量方面发挥更大的作用,为各行各业带来更多创新应用。

结语

检索增强生成(RAG)技术作为一种有效提升AI生成内容质量的方法,正在快速发展并广泛应用于多个领域。通过将外部知识与大型语言模型相结合,RAG不仅提高了模型的准确性和可靠性,还扩展了AI系统的应用范围。随着研究的深入和技术的进步,我们有理由相信RAG将在未来的AI发展中扮演越来越重要的角色,为创造更智能、更可靠的AI系统做出重要贡献。

查看RAG-Survey项目GitHub

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多