在计算机视觉和3D重建领域,如何从2D图像重建3D场景一直是一个充满挑战的研究课题。近年来,随着深度学习技术的发展,一些新的方法被提出并取得了显著的进展。本文将重点介绍两种最新的基于深度学习的3D重建方法:VGGSfM和Mast3r,并通过Gaussian Splatting技术对它们的性能进行全面比较和分析。
VGGSfM(Visual Geometry Grounded Deep Structure From Motion)是由Facebook Research团队开发的一种全新的结构运动恢复(Structure from Motion, SfM)方法。它的核心创新点在于引入了一个完全可微分的SfM流程,将深度学习模型集成到SfM过程的每个阶段。
VGGSfM的主要特点包括:
端到端可微分性:整个流程是完全可微分的,这使得端到端的训练和优化成为可能。
高精度相机重建:VGGSfM能提供极其精确的相机参数重建,这对下游任务如神经渲染非常有利。
全局优化:同时优化所有相机姿态,避免了增量方法的缺陷。
可微分光束平差(Bundle Adjustment):同时优化相机参数和3D点以最小化重投影误差。
Mast3r(Matching And Stereo Triangulation with 3D Reconstruction)是由Naver Labs开发的一种增强型立体匹配方法。它在Dust3r的基础上,集成了密集局部特征预测和快速互反匹配。Mast3r主要聚焦于利用立体视觉来改善3D点和相机参数估计。
Mast3r的主要特点包括:
密集匹配:在密集特征匹配方面表现出色,能提供详细的3D重建结果。
注意力机制:利用图像对之间的交叉注意力进行稳健的特征提取和匹配。
相机参数重建:虽然不是主要关注点,但在相机姿态估计的精度上略逊于VGGSfM和COLMAP。
为了全面比较VGGSfM和Mast3r的性能,研究者使用了Gaussian Splatting技术对两种方法进行了测试。测试数据集包括NLE_tower(5张图像)、penguin(10张图像)和guitar(27张图像)。
图1: NLE tower数据集上Mast3r(左)和VGGSfM(右)的点云重建结果对比
从重建结果来看:
点云密度:Mast3r生成的点云通常更加密集和多样化。这得益于其优秀的密集匹配能力。
相机姿态精度:VGGSfM在相机姿态重建方面表现更为出色。与COLMAP相比,VGGSfM的相机姿态误差小于0.01角度距离,而Mast3r的误差超过0.1角度距离。
鲁棒性:两种方法都比传统的COLMAP更加鲁棒。在实验中,COLMAP无法重建上述所有数据集,而VGGSfM和Mast3r都能成功完成重建任务。
内存效率:VGGSfM在处理大规模数据集时表现更好。在单个RTX 4090 GPU上,VGGSfM可以重建超过90张图像,而Mast3r在处理超过30张图像时就会遇到困难。
除了点云重建,研究者还使用两种方法的结果进行了Radiance Fields重建,以评估它们在下游任务中的表现。
图2: NLE tower数据集上Mast3r(左)和VGGSfM(右)的Radiance Fields重建结果对比
从Radiance Fields重建结果可以看出:
细节保留:VGGSfM由于其更精确的相机姿态估计,在保留场景细节方面表现更好。
视角一致性:VGGSfM重建的场景在不同视角下保持更好的一致性。
边缘锐利度:VGGSfM重建的场景边缘通常更加锐利和清晰。
值得注意的是,Mast3r(以及VGGSfM)的相机姿态可以作为Radiance Fields训练过程中相机姿态优化的良好初始点。研究者进行了一个玩具实验,将Mast3r的结果与Splatfacto进行进一步的相机姿态优化,取得了令人鼓舞的效果。这表明,结合这些深度学习方法和传统的优化技术可能会带来更好的重建结果。
VGGSfM和Mast3r作为两种基于深度学习的3D重建方法,各有其优势和特点。VGGSfM在相机姿态估计和Radiance Fields重建方面表现出色,而Mast3r则在生成密集和多样化的点云方面更具优势。
这两种方法的出现,为3D场景重建和理解开辟了新的可能性。它们不仅能够处理传统方法难以应对的复杂场景,还为下游任务如神经渲染、增强现实等提供了高质量的输入。
未来的研究方向可能包括:
进一步提高这些方法的计算效率,使其能够处理更大规模的数据集。
探索如何将这些方法与其他技术(如Gaussian Splatting)更好地结合,以获得更高质量的重建结果。
研究如何将这些方法应用到实时3D重建和理解任务中,为增强现实和机器人视觉等领域提供支持。
探索如何利用这些方法生成的高质量3D数据来改进其他计算机视觉任务,如物体检测、场景分割等。
总的来说,VGGSfM和Mast3r代表了3D场景重建领域的最新进展,它们的出现不仅推动了该领域的技术发展,也为相关应用领域带来了新的机遇和挑战。随着这些技术的不断成熟和优化,我们有理由期待在不久的将来,更加精确、高效和实用的3D重建系统将会出现。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线 下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同 需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基 于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号