Radiance Fields from VGGSfM和Mast3r:两种先进3D重建方法的比较与分析

RayRay
Radiance FieldsVGGSfMMast3r3D重建相机姿态估计Github开源项目

VGGSfM和Mast3r:3D场景重建的新方向

在计算机视觉和3D重建领域,如何从2D图像重建3D场景一直是一个充满挑战的研究课题。近年来,随着深度学习技术的发展,一些新的方法被提出并取得了显著的进展。本文将重点介绍两种最新的基于深度学习的3D重建方法:VGGSfM和Mast3r,并通过Gaussian Splatting技术对它们的性能进行全面比较和分析。

VGGSfM:基于视觉几何的深度结构运动恢复

VGGSfM(Visual Geometry Grounded Deep Structure From Motion)是由Facebook Research团队开发的一种全新的结构运动恢复(Structure from Motion, SfM)方法。它的核心创新点在于引入了一个完全可微分的SfM流程,将深度学习模型集成到SfM过程的每个阶段。

VGGSfM的主要特点包括:

  1. 端到端可微分性:整个流程是完全可微分的,这使得端到端的训练和优化成为可能。

  2. 高精度相机重建:VGGSfM能提供极其精确的相机参数重建,这对下游任务如神经渲染非常有利。

  3. 全局优化:同时优化所有相机姿态,避免了增量方法的缺陷。

  4. 可微分光束平差(Bundle Adjustment):同时优化相机参数和3D点以最小化重投影误差。

Mast3r:基于3D的图像匹配技术

Mast3r(Matching And Stereo Triangulation with 3D Reconstruction)是由Naver Labs开发的一种增强型立体匹配方法。它在Dust3r的基础上,集成了密集局部特征预测和快速互反匹配。Mast3r主要聚焦于利用立体视觉来改善3D点和相机参数估计。

Mast3r的主要特点包括:

  1. 密集匹配:在密集特征匹配方面表现出色,能提供详细的3D重建结果。

  2. 注意力机制:利用图像对之间的交叉注意力进行稳健的特征提取和匹配。

  3. 相机参数重建:虽然不是主要关注点,但在相机姿态估计的精度上略逊于VGGSfM和COLMAP。

性能对比与分析

为了全面比较VGGSfM和Mast3r的性能,研究者使用了Gaussian Splatting技术对两种方法进行了测试。测试数据集包括NLE_tower(5张图像)、penguin(10张图像)和guitar(27张图像)。

NLE tower comparison

图1: NLE tower数据集上Mast3r(左)和VGGSfM(右)的点云重建结果对比

从重建结果来看:

  1. 点云密度:Mast3r生成的点云通常更加密集和多样化。这得益于其优秀的密集匹配能力。

  2. 相机姿态精度:VGGSfM在相机姿态重建方面表现更为出色。与COLMAP相比,VGGSfM的相机姿态误差小于0.01角度距离,而Mast3r的误差超过0.1角度距离。

  3. 鲁棒性:两种方法都比传统的COLMAP更加鲁棒。在实验中,COLMAP无法重建上述所有数据集,而VGGSfM和Mast3r都能成功完成重建任务。

  4. 内存效率:VGGSfM在处理大规模数据集时表现更好。在单个RTX 4090 GPU上,VGGSfM可以重建超过90张图像,而Mast3r在处理超过30张图像时就会遇到困难。

Radiance Fields重建结果

除了点云重建,研究者还使用两种方法的结果进行了Radiance Fields重建,以评估它们在下游任务中的表现。

NLE tower Radiance Fields

图2: NLE tower数据集上Mast3r(左)和VGGSfM(右)的Radiance Fields重建结果对比

从Radiance Fields重建结果可以看出:

  1. 细节保留:VGGSfM由于其更精确的相机姿态估计,在保留场景细节方面表现更好。

  2. 视角一致性:VGGSfM重建的场景在不同视角下保持更好的一致性。

  3. 边缘锐利度:VGGSfM重建的场景边缘通常更加锐利和清晰。

进一步优化的可能性

值得注意的是,Mast3r(以及VGGSfM)的相机姿态可以作为Radiance Fields训练过程中相机姿态优化的良好初始点。研究者进行了一个玩具实验,将Mast3r的结果与Splatfacto进行进一步的相机姿态优化,取得了令人鼓舞的效果。这表明,结合这些深度学习方法和传统的优化技术可能会带来更好的重建结果。

结论与展望

VGGSfM和Mast3r作为两种基于深度学习的3D重建方法,各有其优势和特点。VGGSfM在相机姿态估计和Radiance Fields重建方面表现出色,而Mast3r则在生成密集和多样化的点云方面更具优势。

这两种方法的出现,为3D场景重建和理解开辟了新的可能性。它们不仅能够处理传统方法难以应对的复杂场景,还为下游任务如神经渲染、增强现实等提供了高质量的输入。

未来的研究方向可能包括:

  1. 进一步提高这些方法的计算效率,使其能够处理更大规模的数据集。

  2. 探索如何将这些方法与其他技术(如Gaussian Splatting)更好地结合,以获得更高质量的重建结果。

  3. 研究如何将这些方法应用到实时3D重建和理解任务中,为增强现实和机器人视觉等领域提供支持。

  4. 探索如何利用这些方法生成的高质量3D数据来改进其他计算机视觉任务,如物体检测、场景分割等。

总的来说,VGGSfM和Mast3r代表了3D场景重建领域的最新进展,它们的出现不仅推动了该领域的技术发展,也为相关应用领域带来了新的机遇和挑战。随着这些技术的不断成熟和优化,我们有理由期待在不久的将来,更加精确、高效和实用的3D重建系统将会出现。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多