PyTorch模型总结工具pytorch-summary详解

RayRay
torchinfoPyTorch模型可视化KerasCNNGithub开源项目

pytorch-summary

pytorch-summary:PyTorch模型结构可视化利器

在深度学习模型开发过程中,能够清晰地查看模型结构和参数信息对于调试和优化至关重要。PyTorch作为一个灵活的深度学习框架,虽然提供了print(model)方法来打印模型结构,但输出信息往往不够直观和全面。为了解决这个问题,pytorch-summary应运而生,它为PyTorch提供了类似于Keras中model.summary()的功能,能够生成简洁明了的模型结构摘要。

pytorch-summary简介

pytorch-summary是一个轻量级的PyTorch模型可视化工具,由GitHub用户sksq96开发。它的主要目标是提供与print(model)互补的信息,帮助用户更好地理解和分析模型结构。截至目前,该项目在GitHub上已获得超过4000颗星,受到广大PyTorch用户的欢迎。

安装和基本使用

安装pytorch-summary非常简单,可以通过pip直接安装:

pip install torchsummary

或者从GitHub克隆源代码:

git clone https://github.com/sksq96/pytorch-summary

安装完成后,使用方法也很直观:

from torchsummary import summary summary(your_model, input_size=(channels, H, W))

其中,your_model是你定义的PyTorch模型,input_size指定了输入数据的维度。需要注意的是,input_size参数是必需的,因为pytorch-summary需要进行一次前向传播来收集模型信息。

pytorch-summary的主要特性

  1. 清晰展示模型层级结构
  2. 显示每一层的输出shape
  3. 计算每一层的参数数量
  4. 区分可训练参数和非可训练参数
  5. 估算模型的内存占用
  6. 支持多输入模型
  7. 可自定义输出格式

实际应用案例

下面我们通过几个具体的例子来展示pytorch-summary的强大功能。

1. CNN模型示例

首先,让我们看一个简单的CNN模型在MNIST数据集上的应用:

import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Net().to(device) summary(model, (1, 28, 28))

运行上述代码,我们将得到如下输出:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 10, 24, 24]             260
            Conv2d-2             [-1, 20, 8, 8]           5,020
         Dropout2d-3             [-1, 20, 8, 8]               0
            Linear-4                   [-1, 50]          16,050
            Linear-5                   [-1, 10]             510
================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.08
Estimated Total Size (MB): 0.15
----------------------------------------------------------------

从这个输出中,我们可以清楚地看到模型的每一层结构、输出shape、参数数量,以及整个模型的参数统计和内存占用估算。

2. VGG16模型示例

对于更复杂的模型,pytorch-summary同样能够提供清晰的概览。以VGG16为例:

import torch from torchvision import models from torchsummary import summary device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') vgg = models.vgg16().to(device) summary(vgg, (3, 224, 224))

这将生成VGG16模型的详细摘要,包括其所有卷积层、全连接层和激活函数。

3. 多输入模型示例

pytorch-summary还支持具有多个输入的模型:

import torch import torch.nn as nn from torchsummary import summary class SimpleConv(nn.Module): def __init__(self): super(SimpleConv, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1), nn.ReLU(), ) def forward(self, x, y): x1 = self.features(x) x2 = self.features(y) return x1, x2 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SimpleConv().to(device) summary(model, [(1, 16, 16), (1, 28, 28)])

这个例子展示了如何为具有两个不同大小输入的模型生成摘要。

pytorch-summary的优势

  1. 简单易用:API设计简洁,使用门槛低。
  2. 信息全面:不仅显示模型结构,还提供参数统计和内存估算。
  3. 灵活性强:支持各种复杂的模型结构,包括多输入模型。
  4. 可视化清晰:输出格式规整,易于阅读和理解。
  5. 与PyTorch生态系统兼容:可以无缝集成到PyTorch项目中。

注意事项

  1. input_size参数必须正确设置,否则可能导致错误的输出。
  2. 对于某些复杂的自定义模型,可能需要额外的配置才能正确显示。
  3. 内存估算是近似值,实际使用可能有所不同。

结论

pytorch-summary为PyTorch用户提供了一个强大而简单的工具,用于可视化和理解深度学习模型的结构。它不仅有助于调试和优化模型,还能帮助研究人员和开发者更好地解释和展示他们的工作。随着深度学习模型日益复杂,这样的工具在模型开发过程中的重要性也将日益凸显。

虽然pytorch-summary已经非常实用,但开发者社区仍在不断改进和扩展其功能。例如,最新的torchinfo项目就是在pytorch-summary的基础上进行了进一步的优化和功能扩展。因此,建议用户关注项目的最新发展,以便使用最新和最优化的版本。

总的来说,pytorch-summary是每个PyTorch开发者工具箱中不可或缺的一部分。无论你是刚开始学习深度学习,还是已经是经验丰富的研究者,这个工具都能在你的项目中发挥重要作用,帮助你更好地理解和优化你的模型。

PyTorch模型结构可视化示例

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多