在机器学习的广阔天地中,表格数据一直是一个重要而独特的领域。传统上,树模型如梯度提升决策树(GBDT)在处理表格数据时表现出色,但也存在一些局限性。PyTorch Frame应运而生,它是一个专为处理多模态表格数据而设计的深度学习框架,旨在推动这一领域的发展。让我们深入了解这个令人兴奋的新工具。
PyTorch Frame是PyTorch的一个深度学习扩展,专门用于处理包含不同列类型的异构表格数据。它的核心特性包括:
多样化的列类型支持: 支持数值、类别、多类别、嵌入文本、标记化文本、时间戳、嵌入图像等多种列类型。
模块化设计: 采用FeatureEncoder
、TableConv
和Decoder
的模块化架构,便于实现和实验各种模型。
先进模型实现: 内置了多个最新的深度表格模型,如Trompt、FTTransformer、TabNet等。
数据集和基准: 提供了多个现成的表格数据集,并对深度模型和GBDT进行了基准测试。
PyTorch生态集成: 可以与其他PyTorch库无缝集成,支持端到端训练。
PyTorch Frame的模块化架构包括以下关键组件:
这种设计使得用户可以轻松实验不同的模型架构,提高了代码的可重用性和灵活性。
PyTorch Frame的使用非常简单直观。以下是一个简单的示例,展示如何创建和训练一个深度表格模型:
from torch_frame import TensorFrame, stype from torch_frame.nn.conv import TabTransformerConv from torch_frame.nn.encoder import EmbeddingEncoder, LinearEncoder, StypeWiseFeatureEncoder class ExampleTransformer(Module): def __init__(self, channels, out_channels, num_layers, num_heads, col_stats, col_names_dict): super().__init__() self.encoder = StypeWiseFeatureEncoder( out_channels=channels, col_stats=col_stats, col_names_dict=col_names_dict, stype_encoder_dict={ stype.categorical: EmbeddingEncoder(), stype.numerical: LinearEncoder() }, ) self.convs = ModuleList([ TabTransformerConv( channels=channels, num_heads=num_heads, ) for _ in range(num_layers) ]) self.decoder = Linear(channels, out_channels) def forward(self, tf: TensorFrame) -> Tensor: x, _ = self.encoder(tf) for conv in self.convs: x = conv(x) out = self.decoder(x.mean(dim=1)) return out
这个示例实现了一个简单的ExampleTransformer
模型,遵循了PyTorch Frame的模块化架构。
PyTorch Frame实现了多个最新的深度表格模型,包括:
除了这些深度学习模型,PyTorch Frame还提供了XGBoost、CatBoost和LightGBM等GBDT模型的实现,方便用户进行性能对比。
PyTorch Frame对多个深度表格学习模型和GBDT在不同规模和任务类型的公开数据集上进行了基准测试。结果显示,一些最新的深度表格模型能够达到与强大的GBDT相当的性能,尽管训练速度较慢。
此外,PyTorch Frame还对不同的文本编码器在真实世界的表格数据集上进行了基准测试,为处理包含文本列的表格数据提供了参考。
PyTorch Frame支持Python 3.8到3.11版本,安装非常简单:
pip install pytorch_frame
安装完成后,用户就可以开始使用PyTorch Frame构建和训练深度表格模型了。
PyTorch Frame为表格数据的深度学习研究开辟了新的道路。虽然一些深度模型已经能够达到与GBDT相当的性能,但在计算效率方面仍有提升空间。未来的研究方向可能包括:
PyTorch Frame为表格数据的深度学习带来了新的可能性。它的模块化设计、对多种列类型的支持以及与PyTorch生态系统的无缝集成,使得研究人员和实践者能够更容易地探索和开发创新的表格数据处理方法。无论您是深度学习专家还是刚刚踏入这个领域的新手,PyTorch Frame都为您提供了一个强大而灵活的工具,助您在表格数据的海洋中乘风破浪。🚀
随着更多研究者和开发者加入到PyTorch Frame的生态系统中,我们有理由相信,表格数据的深度学习将迎来更加光明的未来。让我们共同期待PyTorch Frame在推动这一领域发展中所扮演的重要角色! 🌈
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号