PHALP: 用于预测3D外观、位置和姿态的人体跟踪技术

RayRay
PHALP人体跟踪3D外观预测位置预测姿态预测Github开源项目

PHALP:用于预测3D外观、位置和姿态的人体跟踪技术

在计算机视觉领域,准确跟踪视频中的多个人体一直是一个具有挑战性的任务。来自加州大学伯克利分校的研究人员最近提出了一种名为PHALP(Predicting Human Appearance, Location and Pose)的创新方法,通过预测人体的3D表征来实现单目视频中的人体跟踪。这项研究不仅在多个基准测试中取得了最先进的结果,还为人体动作分析、人机交互等领域带来了新的可能性。

PHALP的核心思想

PHALP的核心思想是将人体跟踪问题转化为3D表征的预测问题。具体来说,该方法包含以下几个关键步骤:

  1. 3D人体重建:从单帧图像中将人体"提升"到3D空间,获取人体的3D姿态、3D位置和3D外观信息。

  2. 轨迹表示:随着跟踪的进行,将每个人体的3D观测结果收集到一个轨迹表示中。

  3. 时序建模:对3D位置、3D外观和3D姿态等属性建立时序模型。

  4. 未来状态预测:利用时序模型预测轨迹的未来状态。

  5. 概率匹配:计算预测状态与新一帧观测结果之间的相似度,并进行匹配。

  6. 轨迹更新:根据匹配结果更新相应的轨迹。

这种基于3D预测的方法使PHALP能够更好地处理遮挡、快速运动等复杂场景,从而实现更稳定和准确的人体跟踪。

PHALP的技术细节

PHALP系统架构图

3D人体重建

PHALP首先使用先进的人体姿态估计模型从单帧图像中提取人体的2D关键点。然后,它采用SMPL(Skinned Multi-Person Linear Model)模型将这些2D关键点"提升"到3D空间。SMPL是一种参数化的人体模型,可以通过调整姿态和形状参数来生成逼真的3D人体网格。

在这个过程中,PHALP不仅获得了人体的3D姿态信息,还能估计人体在3D空间中的位置以及外观特征。这些丰富的3D信息为后续的跟踪提供了坚实的基础。

轨迹表示与时序建模

随着视频帧的推进,PHALP将每个检测到的人体的3D观测结果收集到一个轨迹表示中。这个轨迹包含了人体在时间维度上的连续3D信息。

基于这些时序数据,PHALP为3D位置、3D外观和3D姿态等属性建立时序模型。这些模型能够捕捉人体运动的动态特性,为预测未来状态提供依据。研究人员采用了不同的时序模型来处理不同类型的属性,例如使用线性回归模型预测3D位置,使用自回归模型预测3D姿态等。

未来状态预测与匹配

对于视频中的每一个新帧,PHALP会利用建立的时序模型预测每个轨迹的未来状态。这个预测状态包括人体在新帧中的预期3D位置、3D姿态和3D外观。

然后,PHALP计算预测状态与新帧中实际观测到的人体之间的相似度。这个相似度计算采用了概率框架,考虑了位置、姿态和外观等多个方面的匹配程度。最后,通过匈牙利算法解决关联问题,将预测轨迹与观测结果进行最优匹配。

轨迹更新与优化

根据匹配结果,PHALP更新相应的轨迹信息。对于成功匹配的轨迹,它会融合预测状态和观测结果,从而获得更准确的估计。对于未匹配的观测,系统会考虑是否需要初始化新的轨迹。同时,PHALP还实现了轨迹管理机制,能够处理人体进入和离开场景的情况。

此外,PHALP还采用了一些优化策略来提高跟踪的稳定性和精度。例如,它使用了遮挡处理机制,在人体被遮挡时仍能维持轨迹的连续性。系统还实现了长短期记忆功能,能够在人体短暂消失后重新出现时恢复跟踪。

PHALP的应用与评估

PHALP在多个公开数据集上进行了评估,包括PoseTrack、3DPW等。实验结果表明,PHALP在多人跟踪精度、3D姿态估计准确性等指标上都达到了最先进的水平。特别是在处理复杂场景(如严重遮挡、快速运动)时,PHALP展现出了明显的优势。

PHALP渲染效果图

PHALP的潜在应用场景非常广泛,包括但不限于:

  1. 动作分析:在体育科学、舞蹈研究等领域,PHALP可以提供详细的3D人体运动数据。

  2. 安防监控:PHALP能够在复杂环境中稳定跟踪多个人体,有助于提高视频监控系统的智能化水平。

  3. 人机交互:在虚拟现实、增强现实等应用中,PHALP可以实现更自然、精确的人体动作捕捉。

  4. 电影特效:PHALP的3D重建能力可以辅助电影制作中的动作捕捉和角色动画。

  5. 医疗康复:通过分析病人的运动模式,PHALP可以协助制定个性化的康复计划。

PHALP的安装与使用

研究团队已经将PHALP的代码开源,并提供了详细的安装和使用说明。安装PHALP的主要步骤如下:

  1. 克隆PHALP仓库:

    git clone https://github.com/brjathu/PHALP.git
    
  2. 创建并激活conda环境:

    conda create -n phalp python=3.10
    conda activate phalp
    
  3. 安装PyTorch和其他依赖:

    conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
    pip install -e .[all]
    

安装完成后,用户可以通过简单的命令行指令在自己的视频上运行PHALP:

python scripts/demo.py video.source=path/to/your/video.mp4 video.output_dir='outputs'

这个命令将会处理指定的视频,并在outputs目录下生成可视化结果和跟踪数据。

PHALP的未来发展

尽管PHALP已经展现出了优秀的性能,但研究团队表示还有进一步改进的空间:

  1. 实时处理:目前PHALP的处理速度还不足以支持实时应用,未来可以通过算法优化和硬件加速来提高处理速度。

  2. 多视角融合:结合多个摄像头的数据,可以进一步提高3D重建和跟踪的精度。

  3. 场景理解:结合场景语义信息,可以改善在复杂环境下的跟踪性能。

  4. 行为理解:在跟踪的基础上,进一步分析和理解人体的行为和意图。

  5. 隐私保护:在保持跟踪精度的同时,探索如何更好地保护被跟踪对象的隐私。

结论

PHALP代表了人体跟踪技术的一个重要进展。通过将2D跟踪问题转化为3D预测问题,PHALP不仅提高了跟踪的精度和稳定性,还为后续的人体行为分析提供了丰富的3D信息。随着技术的不断完善和应用场景的拓展,我们可以期待PHALP在计算机视觉和人机交互等领域带来更多创新和突破。

PHALP的成功也反映了跨学科研究的重要性。这项工作结合了计算机视觉、机器学习、人体建模等多个领域的知识,展示了如何通过融合不同学科的方法来解决复杂的实际问题。未来,我们期待看到更多类似的跨领域创新,推动人工智能技术在更广泛的应用中发挥作用。

参考文献

  1. Rajasegaran, J., Pavlakos, G., Kanazawa, A., & Malik, J. (2022). Tracking People by Predicting 3D Appearance, Location & Pose. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

  2. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6), 1-16.

  3. Kanazawa, A., Black, M. J., Jacobs, D. W., & Malik, J. (2018). End-to-end recovery of human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

  4. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A., Tzionas, D., & Black, M. J. (2019). Expressive body capture: 3d hands, face, and body from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

  5. Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., & Schiele, B. (2018). Posetrack: A benchmark for human pose estimation and tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

通过PHALP这项研究,我们看到了计算机视觉技术在人体跟踪领域的最新进展。它不仅推动了技术的发展,也为众多实际应用提供了新的可能性。随着研究的深入和技术的完善,我们有理由相信,PHALP及其衍生技术将在未来发挥越来越重要的作用,为人类社会带来更多便利和价值。

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多