Open-MAGVIT2: 突破自回归视觉生成的新纪元

RayRay
Open-MAGVIT2视觉生成图像分词器自回归模型大规模词表Github开源项目

Open-MAGVIT2: 突破自回归视觉生成的新纪元

在视觉生成领域,VQGAN作为初始tokenizer长期以来一直发挥着不可或缺的作用,特别是在自回归视觉生成任务中。然而,由于码本大小和利用率的限制,基于VQGAN的自回归生成能力一直被低估。为了突破这一瓶颈,腾讯ARC团队开源了Open-MAGVIT2项目,这是对原始MAGVIT2模型的重新实现,旨在推动自回归视觉生成技术的发展。

项目背景与目标

MAGVIT2提出了一种强大的视觉tokenizer,通过引入新颖的无查找(LookUpFree)量化技术并将码本大小扩展到$2^{18}$,在图像和视频生成任务中展现出令人瞩目的性能。这一技术在近期最先进的自回归视频生成模型VideoPoet中发挥了关键作用。然而,研究界一直无法获取这个强大的tokenizer。

Open-MAGVIT2项目的目标是遵循MAGVIT-2中tokenizer设计的重要见解,并使用PyTorch重新实现它,以期达到与原始模型最接近的结果。该项目希望通过这一努力,能够在自回归视觉生成领域推动创新和创造力的发展。

项目亮点

  1. 最先进的性能: Open-MAGVIT2在8倍下采样时实现了0.39的rFID,超越了VQGAN、MaskGIT以及最近的TiTok、LlamaGen和OmniTokenizer等模型。

  2. 灵活的分辨率支持: 项目提供了针对不同分辨率的训练代码和检查点,包括128x128和256x256的ImageNet模型。

  3. 高度的码本利用率: 相比其他模型,Open-MAGVIT2实现了100%的码本利用率,充分发挥了大规模码本的潜力。

  4. 优秀的重建质量: 在PSNR指标上,Open-MAGVIT2达到了21.53(256x256)和25.78(128x128)的高分,展现出卓越的图像重建能力。

核心技术

Open-MAGVIT2的核心是其视觉tokenizer,由编码器、无查找量化器(LFQ)和解码器组成。这一设计使得模型能够高效地将图像转换为离散的token序列,并在重建过程中保持高质量。

Open-MAGVIT2 Framework

图1: Open-MAGVIT2 tokenizer的框架图,展示了编码器、LFQ和解码器的组成

性能评估

在与其他先进模型的对比中,Open-MAGVIT2展现出显著的优势:

方法Token类型Token数量训练数据码本大小rFIDPSNR码本利用率
VQGAN2D16x16256x256 ImageNet10247.9419.4-
MaskGIT2D16x16256x256 ImageNet10242.28--
LlamaGen2D16x16256x256 ImageNet163842.1920.7997%
Open-MAGVIT22D16x16256x256 ImageNet2621441.5321.53100%

表1: 不同tokenizer在256x256 ImageNet 50k验证集上的重建性能对比

特别值得注意的是,Open-MAGVIT2在128x128分辨率上训练并在512x512分辨率上测试时,仍然保持了出色的性能:

方法Token类型Token数量数据rFID
MAGVIT22D16x16128x128 ImageNet1.21
Open-MAGVIT22D16x16128x128 ImageNet1.56

表2: 与原始MAGVIT2在128x128分辨率上的性能对比

视觉效果展示

Open-MAGVIT2不仅在数据指标上表现优异,在实际的图像重建效果上也令人印象深刻。以下是一些重建结果的可视化:

256x256 Reconstruction

图2: 在256x256分辨率上训练和测试的Open-MAGVIT2 tokenizer重建效果。(a)为原始图像,(b)为重建图像。

512x512 Reconstruction

图3: 在128x128分辨率上训练并在512x512分辨率上测试的Open-MAGVIT2 tokenizer重建效果。(a)为原始图像,(b)为重建图像。

未来展望

Open-MAGVIT2项目目前仍处于早期阶段,团队正在积极开发中。未来的工作计划包括:

  1. 通过大规模训练进一步改进图像tokenizer。
  2. 完成自回归模型的训练。
  3. 开发视频tokenizer及其对应的自回归模型。

这些计划的实现将进一步推动自回归视觉生成技术的发展,为研究者和开发者提供更强大的工具。

结语

Open-MAGVIT2项目为自回归视觉生成领域带来了新的可能性。通过开源实现MAGVIT2的核心技术,该项目不仅展示了卓越的性能,还为整个社区提供了宝贵的研究资源。随着项目的不断发展和完善,我们期待看到更多基于这一技术的创新应用,推动视觉生成技术向更高水平迈进。

对于有兴趣深入了解或参与项目的研究者和开发者,Open-MAGVIT2的GitHub仓库提供了详细的安装指南、训练脚本和评估方法。通过共同努力,我们有望在不久的将来见证自回归视觉生成技术的新突破。

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多