非平稳Transformers: 探索时间序列预测中的平稳性

RayRay
Non-stationary Transformers时间序列预测深度学习注意力机制模型架构Github开源项目

引言

时间序列预测是一个具有广泛应用的重要任务,涉及金融、气象、交通等多个领域。近年来,Transformer模型凭借其强大的长程依赖建模能力,在时间序列预测中取得了显著成果。然而,现实世界中的时间序列数据往往呈现出非平稳特性,即数据的统计特征随时间变化,这给Transformer模型带来了巨大挑战。

为了解决这一问题,清华大学研究团队提出了一种新的非平稳Transformers框架。该框架通过巧妙设计的序列平稳化和去平稳注意力机制,有效提高了模型对非平稳时间序列的预测能力。本文将详细介绍这一创新框架的设计思路、核心组件以及在多个基准数据集上的出色表现。

非平稳Transformers框架

框架概述

非平稳Transformers框架主要包含两个关键组件:序列平稳化(Series Stationarization)和去平稳注意力(De-stationary Attention)。这两个组件协同工作,旨在解决非平稳时间序列预测中的两个核心问题:数据的可预测性和模型的表达能力。

框架架构图

序列平稳化

序列平稳化模块的目标是统一每个输入序列的统计特征,从而提高数据的可预测性。具体来说,该模块通过以下步骤实现:

  1. 对输入序列进行标准化处理,使其均值为0,方差为1。
  2. 将标准化后的序列输入Transformer模型进行预测。
  3. 在输出阶段,恢复预测结果的原始统计特征,以获得最终的预测值。

这一过程可以用下图直观表示:

序列平稳化示意图

序列平稳化的优势在于,它能够在保留原始序列非平稳信息的同时,提高数据的可预测性。这一特性对于准确预测现实世界中的突发事件尤为重要。

去平稳注意力

去平稳注意力机制是为了解决过度平稳化问题而设计的。在传统的平稳化处理中,模型可能会丢失序列中的重要非平稳信息,导致对不同序列生成相似的注意力分布。为了克服这一缺陷,去平稳注意力机制通过以下方式恢复非平稳信息:

  1. 首先,模型学习原始非平稳序列的注意力分布。
  2. 然后,通过近似这些区分性强的注意力分布,将非平稳信息重新引入到时间依赖关系中。

这一过程可以用下图表示:

去平稳注意力示意图

通过去平稳注意力机制,模型能够在保持数据可预测性的同时,有效捕捉序列中的非平稳特征,从而提高预测准确性。

实验结果与分析

为了验证非平稳Transformers框架的有效性,研究团队在多个基准数据集上进行了广泛的实验。实验结果表明,该框架能够显著提升多种主流Transformer模型的性能。

主要实验结果

在多变量时间序列预测任务中,配备了非平稳框架的vanilla Transformer在所有六个基准数据集和不同预测长度上均取得了最先进的性能。下图展示了详细的实验结果:

主要实验结果

模型性能提升

研究团队将非平稳框架应用于六种主流的基于注意力的模型,结果显示该方法能够一致地提高模型的预测能力。具体来说:

  • Transformer: 平均提升49.43%
  • Informer: 平均提升47.34%
  • Reformer: 平均提升46.89%
  • Autoformer: 平均提升10.57%
  • ETSformer: 平均提升5.17%
  • FEDformer: 平均提升4.51%

这些提升使得每个模型都超越了之前的最先进水平。下图直观展示了各模型的性能提升:

模型性能提升

结论与未来展望

非平稳Transformers框架通过创新的序列平稳化和去平稳注意力机制,有效解决了时间序列预测中的非平稳性问题。实验结果表明,该框架能够显著提升多种Transformer模型在不同任务和数据集上的性能。

未来,研究团队计划将非平稳Transformers框架应用于更多的模型,包括但不限于:

  • iTransformer
  • Crossformer
  • FEDformer

此外,序列平稳化作为一个独立于架构的模块,已被广泛应用于解决时间序列中的非平稳性问题。感兴趣的读者可以参考time-series-library以了解更多实现细节。

总的来说,非平稳Transformers框架为处理非平稳时间序列预测任务提供了一种有效的解决方案,为该领域的进一步研究和应用开辟了新的方向。随着框架的不断完善和应用范围的扩大,我们有理由相信,它将在金融预测、气象预报、交通流量预测等实际应用中发挥越来越重要的作用。

如果您对这项研究感兴趣,欢迎访问项目GitHub仓库获取更多信息和代码实现。同时,研究团队也欢迎学术界和工业界的同仁们就相关问题进行深入讨论和合作。让我们共同推动时间序列预测技术的发展,为解决现实世界中的复杂预测问题贡献力量。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多