近年来,随着人工智能技术的快速发展,将神经网络部署到嵌入式系统中的需求日益迫切。然而,神经网络庞大的计算量和存储需求与嵌入式设备有限的资源之间存在着巨大的矛盾。为解决这一问题,学术界和工业界都在积极探索各种网络压缩和加速技术,力图在保证模型性能的前提下最大限度地降低资源消耗。本文将对嵌入式神经网络领域的最新研究进展进行全面梳理和深入分析。
网络压缩是实现神经网络嵌入式部署的关键技术之一。目前主要的压缩方法包括参数共享、教师-学生网络、低比特量化、稀疏化正则和剪枝、张量分解等。
参数共享通过减少网络中独立参数的数量来压缩模型。常见的方法包括使用结构化矩阵和哈希技术。例如,IBM研究院提出了使用结构化卷积矩阵来实现高效深度学习。Google也探索了使用结构化变换来压缩小型深度学习模型。这些方法可以显著降低模型参数量,同时对精度的影响相对较小。
教师-学生网络,也称为知识蒸馏,是一种模型压缩和加速的有效方法。其核心思想是使用一个复杂的教师网络来指导一个简单的学生网络的训练。Google提出的Distilling the Knowledge in a Neural Network是该领域的开创性工作。近期,TuSimple公司提出的Like What You Like: Knowledge Distill via Neuron Selectivity Transfer进一步改进了这一方法。
降低网络中参数和激活值的精度是另一种重要的压缩方法。二值化神经网络(BNN) 和三值网络(TWN)将权重限制在{-1,+1}或{-1,0,+1}范围内,可以极大地减少存储需求和计算量。Intel、Microsoft等公司都在积极探索低精度网络训练技术。例如,Intel Labs China提出的Incremental Network Quantization方法可以将CNN量化为低精度权重网络,同时几乎不损失准确性。
通过引入稀疏约束或直接剪枝来降低网络复杂度也是一种有效的压缩方法。斯坦福大学Song Han团队在这一领域做了开创性的工作,他们提出的Deep Compression方法可以将网络大小压缩35-49倍而不损失精度。近期,普渡大学提出的Exploring Sparsity in Recurrent Neural Networks进一步将稀疏化技术扩展到循环神经网络中。
张量分解是一种新兴的网络压缩方法,它通过分解高阶卷积核来减少参数量。三星等公司提出的Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications使用张量分解技术将VGG-16网络压缩了20倍。莫斯科国立大学等机构提出的Ultimate tensorization方法进一步将张量分解技术扩展到全连接层。
除了网络压缩,设计专用硬件加速器也是提高神经网络在嵌入式系统上运行效率的重要途径。目前主要有FPGA、ASIC和移动GPU等多种实现方案。
FPGA因其可重构性和并行处理能力,成为神经网络加速器的热门选择。例如,首尔国立大学提出的基于FPGA的低功耗语音识别系统,可以高效运行循环神经网络。Intel的研究人员也对比了FPGA、CPU、GPU和ASIC在分析服务器中加速循环神经网络的性能。此外,斯坦福大学Song Han团队设计的ESE(Efficient Speech Recognition Engine)在FPGA上实现了高效的语音识别。
相比FPGA,ASIC 具有更高的能效比,是追求极致性能的首选。韩国科学技术院(KAIST)开发的DNPU是一种可重构的CNN-RNN处理器,能效比高达8.1TOPS/W。谷歌的TPU也是一种高效的ASIC加速器,在数据中心广泛应用于深度学习推理。
随着移动GPU性能的不断提升,它也成为嵌入式深度学习的重要平台。Qualcomm、ARM等公司都在积极优化移动GPU上的深度学习框架。例如,Qualcomm的Snapdragon Neural Processing Engine可以充分利用Adreno GPU来加速深度学习应用。
得益于网络压缩和硬件加速技术的进步,神经网络在嵌入式系统中的应用正变得越来越广泛。以下是一些典型的应用场景:
智能手机: 面部识别、语音助手、AR等功能都依赖于嵌入式神经网络。
智能家居: 智能音箱、安防摄像头等设备可以通过嵌入式神经网络实现语音交互、物体检测等功能。
自动驾驶: 先进驾驶辅助系统(ADAS)中的多个模块都使用了嵌入式神经网络,如车道线检测、交通标志识别等。
工业物联网: 嵌入式神经网络可用于设备预测性维护、质量控制等场景。
可穿戴设备: 健康监测、活动识别等功能都可以通过嵌入式神经网络来实现。
尽管嵌入式神经网络技术已取得了长足进步,但仍面临诸多挑战,如模型精度与资源消耗的平衡、异构计算平台的高效利用等。未来的研究方向可能包括:
更高效的网络结构设计,如MobileNet、ShuffleNet等轻量级网络的进一步优化。
自动化的模型压缩技术,减少人工干预。
软硬件协同设计,更好 地适配特定应用场景。
边缘-云协同推理技术,实现资源的最优分配。
低功耗学习算法,使嵌入式设备具备在线学习能力。
总的来说,嵌入式神经网络是一个充满挑战和机遇的研究领域。随着技术的不断进步,我们有理由相信,神经网络终将成为嵌入式系统中不可或缺的一部分,为各行各业带来变革性的影响。
本文全面介绍了嵌入式神经网络领域的最新研究进展,包括网络压缩、硬件加速等关键技术。这些技术的发展正在推动神经网络向更轻量、更高效的方向演进,为其在资源受限的嵌入式环境中的广泛应用铺平了道路。尽管仍面临诸多挑战,但嵌入式神经网络无疑是一个充满前景的研究方向,值得学术界和产业界持续关注与投入。未来,随着新算法、新架构、新硬件的不断涌现,嵌入式神经网络必将在人工智能的普及与应用中发挥越来越重要的作用。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号